Dams and Reservoirs; Lessons Learned Ray E. Martin, Ph.D., P.E., D.GE

Outline of Case Histories

- Excavations in Reservoirs a really bad idea
- Differing Foundation Stiffness expect differential settlement
- Internal Erosion the number 2 cause of dam failures
- Karst always a concern

Karl Terzaghi

"---the principal function of theory consists in teaching us what and how to observe in the field."

"I consider Engineering Geology an essential antidote against a too theoretical approach to practical problems."

Professor Dick Goodman on Terzaghi in <u>The Engineer as</u> <u>Artist</u>

"---he tried to see the whole of the problem, beginning with geology, and ending with measuring behavior during and after construction."

Excavation in Reservoir

Ted Turner Fishing Dam/Reservoir, Flying D Ranch (15 mi²), Gallatin Gateway, MT (1996)

Montana Dam Design

- 40 ft high homogeneous dam sandy clay and clayey sand
- Surface of reservoir 6 to 10 ft of clay over sand/gravel
- Borrow pit about 1 mile from reservoir site
- Technician sent home with 7ft of fill needed to reach crest
 - Budget for observation and testing expended
- Contractor then excavated remaining fill from reservoir

After Reservoir Filled – Urgent Call

- Ranch manager called: "seepage flowing from toe of dam on right side of outfall pipe"
- Ray: "Drain the lake ASAP"
- What caused the seepage?

Repair

- Backfill excavation with compacted fill from borrow pit
- Construct inverted filter-drainage blanked over seepage area

Excavation in Reservoir

Soledad Gold Mine Tailings Dam/Reservoir, Honduras (2007)

Tailings Disposal Facility Dam Design

- Downstream construction of a tailings dam 43m high
- Appeared well designed-borings/seepage/stability analysis

Reservoir Design

- Reservoir underlain by lean clay residual soil/limestone rock
- Test pits and geologic mapping in reservoir
- No reservoir seepage analysis impermeable liner
- Pond 1.5mm-thick LLDPE liner underlain by geogrid
- Designed to span sinkhole 20ft in diameter 5ft deep
- Decant structure limited pond water volume to 50,000m³
- Two borrow areas for dam construction within reservoir
- Do you see a potential problem?

Construction

Several sinkholes opened in reservoir during construction

- Some borrow material had been removed over limestone
- Occurred during wet weather periods
- Geogrid and geosynthetic liner placed over
 - Residual soil
 - Exposed rock unrelated to borrow excavations

Adverse Geologic Conditions

 Borrow area expanded to include failure area

Failure

Failure

- Liner seams likely failed differential movement?
- Seepage entered soils <u>reduced in thickness</u> by excavation
- Soil piped into limestone solution features
- Sinkhole formed
- Liner/geogrid failed to support water load over sinkhole
- Pond drained into subsurface and exited downstream
- A large environmental problem in stream

Excavation in Reservoir

Marlin Gold Mine Tailings Dam/Reservoir – San Miguel, Guatemala (2006)

Gold Mine Tailings Dam Design

- Height 80 m
- Constructed in three stages centerline construction
- Rock fill dam with clay core and cutoff trench
- Grout curtain
- Internal filter drainage system (chimney drain)
- Dam appears to be well designed
- Reservoir was unlined

Covering Tailings with Geosynthetic/1.5m Soil

Tailings Reservoir

- Shallow residual soil cover over rock
- Rock is highly fractured tuff and metamorphic rock
- Groundwater reported 200m below surface
- Statement from design review document:

"Suitable dam core material occurs in relatively small pockets scattered within the reservoir."

- Tailings contain heavy metals
- What problem could occur given the geologic setting?

Differing Foundation Stiffness

Upper Tamakoshi Hydropower Dam, Lamabargar, Nepal (2015)

Overall Project Characteristics

- Peaking, "run of the river" facility
- Construction began in 2012, stopped by 2015 earthquakes
- Estimated cost = US \$441 Million
- Components impacted by earthquake
 - 22 m high concrete gravity dam (abutments, intake, spillway)
 - Two 225 m long desanding basins
- Little or no damage
 - 8.4 km long power tunnel, penstock with 822 m head drop, 456 MW in-mountain powerhouse, tailrace tunnel

Location Map

Panel of Experts (POE) Called to

Evaluate Headworks Area - Displacements

- Binod Tiwari, Ph.D., P.E., Cal. State Fullerton
- James K. Mitchell, Sc.D., P.E., D.GE, Chairman
- Izzat M. 'Ed' Idriss, PhD, P.E.
- William F. Marcuson, III, PhD, P.E.
- Ray E. Martin, Ph.D., P.E., D.GE

Earthquake History/Landslides

- Historically, 10 earthquakes >M7.0 since 1255
- Two major recent events:
 - M_w = 7.8 on April 25, 2015
 - M_w = 7.3 on May 12, 2015
- More large earthquakes will occur
- Several landslides occurred in valley during recent earthquakes
- Potential for future major landslides was not investigated in design of headworks facilities

Local Geology

- Gneiss rock at dam site abutments strongly foliated/ highly fractured
- Deep river alluvium exists under dam
- Deposited behind <u>ancient</u> landslide dam
- Landslide dam 2.5km downstream of new dam
 - Estimated age 2000 years
 - Most landslide dams are not stable usually eroded by river
 - Perhaps stable because large boulders armor downstream surface

Landslide Dam

- 39 M m³ in landslide dam
- 18 M m³ of alluvium behind landslide dam
- 300 m high

Foundation

an

 Illustrates estimated depth of alluvium under center of dam

Summary of Foundation Conditions

- Right abutment monolith anchored to rock
- Intake and spillway monoliths
 - 8 m of alluvium removed
 - Replaced with 5 m of compacted fill
 - Shallow cutoff wall
 - ~120 m of alluvium below fill
 - Maximum investigation depth = 46 m

 Left Abutment – planned to be anchored to rock - actually a very large boulder

Right/Left Abutments

Cross Section

Spillway

Spillway and Inlet Monoliths supported on compacted fill EI 1 from about EI 1964 to EI 1959

Foundation Questions

- What impact would you expect earthquakes to have on dam?
- Did previous earthquakes densify alluvium?
- Will future earthquakes continue to densify alluvium?

Post Site Visit Borings – Rock 121 m (2016)

Cause of Settlement/Displacement

Liquefaction

- Volumetric strain ~ 1% limited depth of liquefiable soil
- Volumetric compression (densification)
 - Volumetric strain ~ 0.15%
- Tectonic movements
 - Possible strike-slip movement on fault in valley
 - Evidence not supportive
- Panel conclusion densification was likely cause
- How would you have designed the dam?

Internal Erosion - General Comments

Piping is the number 2 cause of dam failures worldwide

Internal Erosion/Piping

- Piping backward erosion of soils from and unfiltered exit under a sufficiently high exit gradient to cause soil particles to erode and form a "pipe" to the upstream source of seepage
- Silts and sands most susceptible
- Gravel and larger size particles are susceptible if gradients are sufficiently high

Critical Gradient/Roofing

- Gradient which initiates soil particle movement
- Upward vertical critical gradient, $i_{cr} = \Upsilon'_m / \Upsilon_w$
 - Often assumed to be 1
 - Depends on the unit weight of the soil for example

 $\Upsilon = 112.4 \text{pcf is:} \ i_{cr} = \Upsilon'_{m} / \Upsilon_{w} = (112.4 - 62.4) / 62.4 = 0.8$

- i_{cr} can be lower when flow is sloping down 0.6 to 0.3
- Piping enabled by material that provides "roof" over pipe
Surface of Seepage/ Internal Erosion/A Failure

Internal Erosion

Teton Dam, Fremont & Madison Cos. Idaho

Teton Dam Piping Failure – 1976 -14 Deaths

Cross Section Looking Down Stream

- Fractured rock excavated in upper portion of Core Trench
- <u>How erodible is silt?</u>

Internal Erosion

Golf Course Dam, Williamsburg, VA (1980's)

Williamsburg Golf Course Dam

- Small dams can fail by piping
- Homogeneous 15ft high embankment dam constructed of sandy clay/clayey sand
- Cradle in lower 10 percent of pipe
- Reservoir filled 10ft of head
- Failed over night along pipe

Failure

• How did it fail?

Internal Erosion

Swift No. 2 Dam, Lewis River, Skamania County, Washington (2005)

Swift No. 2 Hydropower Project

- Constructed 1957 1958
- Length of water supply canal – 3 miles
- Impoundment 2400 ac-ft
- Embankment height in forebay – 93 ft

Foundation Stratigraphy

- Stratum A alluvium/colluvium sand and gravel (10 to 20 ft thick) – <u>Recent</u>
- Stratum B vesicular to massive highly jointed basalt rock (8 to 50 ft thick) – from Mt. St Helens (about 2000 years old) - <u>Recent</u>
- Stratum C alluvium silt, sand, gravel, cobbles, boulders (> 200 ft thick) - <u>Pleistocene</u>
 - Stratum C1 silt and sand
 - Stratum C2 gravel, cobbles, boulders (< 5 percent silt/sand)

Post-Construction Canal Leakage

- 1958 Seepage loss from canal ~100 cfs (45,000 gpm)
- 1959 Canal drained twice, numerous sinkholes repaired
- 1974 Boils at downstream toe of the forebay embankment
 - "An inspection of the river bank---several places where water was cascading into Yale Reservoir---appeared to be clear."
 - Canal drained; numerous sinkholes repaired
- 2000 Seepage observed along Lewis River/Yale Reservoir
 - "The flow appeared to be clear, but has been reported to be <u>turbid</u> during periods of high runoff.---seepage gradient should be small" [FERC Report]

April 21, 2002 Failure

- Blowout occurred at toe of embankment at about 3:00 AM
- Orifice expanded upstream causing breach of the embankment at about 5:20 AM
- Flooding destroyed downstream facilities
- Sinkholes discovered in forebay
- Discharge contained in downstream reservoir

Failure in Progress

Post Construction View/Post Failure View

Piping Failure

Stratum C1 – "Sloping Down"

Stratum

Stratum C2

Roo

• Why did it take 44 years to fail?

Piping and Blowout Unfiltered Exit

Internal Erosion

Tailings Reservoir Rim Failure, Sand Mine, Camden, TN (2014)

Tailings Pond Rim Piping Failure

Failure on October 26, 2014

- A 911 call at 9:51PM from home north of CSX track "flooding"
- A CSX Railroad train derailed at about 10PM
- The Pond contained about 79.6 million gallons of water at failure
- In use for about one year

Geology

Breach

- A Fill for access road
- B Clayey sand
- C Upper McNairy fine sand
- D Lower McNairy cemented sand/silt/ clay
- Note head cut blocky area in cemented soil
- Water depth at rim 25.7 ft

Ground Surface Left of Breach

- Ground Surface
 3.5 ft higher than at breach
- Head 22.2 ft or
 3.5 ft less than at breach
- Pushed stick in ground 3 ft at location of flow
- How did failure occur?

Dam/Reservoir in Karst Zongolica

Zongolica Hydropower Dam/Reservoir, Veracruz State, Mexico (2015)

Project Location

Understand the Site Geology

- 2008 Geotechnical Report, Section 4.5 Local Geology " [The formation includes]---limestones and some dolomite horizons --- of the Orizaba formation---."
- What geologic features can be observed?

2008 Field Investigation/Geology

- Reservoir limestone
 - No investigation or borings until after dam was constructed
- Dam (30 m high) limestone
 - 2 borings little solutioning indicated on logs
 - Water pressure test data: $k = 10^{-4} 10^{-5} cm/sec$
- What does this range of k-values indicate?
- Power tunnel (2.7km long) limestone
 - 1 boring little solutioning indicated on log, no pressure tests
- Powerhouse sandstone and shale
 - 6 borings
- <u>Why?</u>

2012 Geotechnical Report Prior to First

Filling of Reservoir

- Gray limestone, contains minor interbedded red shale
- Rock is of very good quality
- Concave rock structures generated by dissolution
- Discontinuous small cavities observed along fractures

"Neither karstic sinkholes nor visible infiltration that could affect the water reservoir were observed."

First Filling of the Reservoir

- Problem "the reservoir is leaking so much we can't operate in dry season" - reservoir could not be <u>filled</u> at 1.5 m³/sec stream flow
 - Flow ranged from 0.5 m³/sec in dry season to >4.5 m³/sec in wet season
- We needed a local geologist!

Carlos Garcia, Geologist - Comments

- It is likely that groundwater is well below river
- River is perched
 - Landslide in reservoir is a remnant of an ancient sinkhole

Upstream Ancient Sinkhole from Ridge Line

Vertical Shaft in Limestone Quarry in Upstream Ancient Sinkhole

Remedial Alternatives – 8 Months to Finish

- Grouting Reservoir risks with grouting too high
 - Upside cost of grouting unknown how deep 200m
 - Need to create a bathtub not likely possible
 - Maximum available for remedial repair \$10 million
- Lining Reservoir
 - Line portions of reservoir side walls with shotcrete
 - Based on geologic mapping
 - Line bottom with concrete slab

• What is the potential problem with lining reservoir?

Fiberglass Rock Bolts with WWF/Rebar and Shotcrete on Sidewalls and Concrete Slab

Landslide Looking Upstream from Spillway

 Temporary Solution - design and construct a soil nailed slab over base of landslide to operating level of reservoir

Slope Protection Issues

- What concerns would you have with this soil nailed slope protection?
- 1 Shallow above soil nailed slope protection
- 2 Deep seated downslope from roadway
- 3- Deep seated under roadway

Summary

- Estimated cost of project about \$100M
- Actual cost pre-repairs about \$80M
- Remedial repairs to reservoir \$10M
- Remedial repairs in the tunnel and penstock thrust blocks \$10M
- Cost after remedial repairs about \$100M
- The reservoir holds water
- The slope has not failed, yet (2016)

Dam/Reservoir in Karst Clifford Craig Dam/Reservoir, Roanoke Co, VA (1986-1996)

Geomorphology

- Dry Hollow, large sinkholes, disappearing stream
- Spring Hollow, steep slopes, caves & springs
- Cove Hollow, dry tributary valley

Geologic Setting

- Rome Formation shale interbedded with limestone and dolomite layers
- Successive large tight folds
 - Top half of folds had been eroded in past geologic history

Ν

- Bedding dips steeply to north towards Roanoke River
- Formation strike is east-west perpendicular to valleys
- Major fractures oriented north-south, perpendicular to strike

Structural Geology

- Creeks aligned along major fracture orientation
- Section A-A Dry Hollow 130
 feet higher than
 Spring Hollow
 and Cove
 Hollow

Dry Hollow/Spring Hollow

Broad valley

Steep sided valley

Hydraulic Connection

Legend

- SH Sinkholes
- X Disappearing stream
- C Cave
- S Springs
- What occurred at this site in past geologic history?

Drilling Program

- Borings drilled along ridge lines on both sides above Spring Hollow
- Voids and caverns located along both sides of Spring Hollow at valley level
- Geomorphology sequence confirmed

Possible Solutions

- Abandon site too risky, reservoir may never fill
- Design a reservoir grouting program
 - Numerically model seepage conditions pre-and post grout
- Evaluate risk develop a test grouting program
 - Monitor spring flow, estimate production grouting cost
- Results of test grouting program
 - Spring flows not modified significantly test section too short
 - Grout takes indicated production grouting costs acceptable if test section representative of remainder of grouting area

Pre and Post Reservoir Groundwater

Contours

 Seepage loss no grouting – 4MGD • With grouting reservoir leakage evaluated assuming fractured rock conditions

Test Grouting/Production Grouting

Program

- Results of test grouting program
 - Spring flows not modified significantly – test section too short
 - Grout takes indicated production grouting costs acceptable if test section representative of remainder of grouting area

Performance

Production grouting completed
Cost higher than estimated
Reservoir holds water

Thank You Questions?