

Advances in Site Response Analysis to Improve Predictions for Design-Level Ground Motions

Prof. Ellen M. Rathje, Ph.D., P.E.

Janet S. Cockrell Chair in Engineering Dept. of Civil, Arch., and Env. Engineering University of Texas at Austin

Dr. George Zalachoris, Dr. Yumeng Tao Dr. Albert Kottke, Dr. Boqin Xu

Funding provided by Nuclear Regulatory Commission

Site Effects and Site Response Analysis

One-Dimensional (1D) Site Response Analysis

SH1D Assumption

- All layer boundaries are horizontal and extend infinitely
- Soil response is predominantly controlled by vertically propagating, horizontally polarized SH waves

One-Dimensional (1D) Site Response Analysis

Frequency Domain (Shake-type) Approach

Modeling Nonlinear Soil Behavior

Equivalent-linear soil properties

Nonlinear hysteretic soil behavior

EQL-FD

analysis

Frequency-dependent shear strains

Outline

Accuracy of 1D Site Response Analysis

 Use <u>small-strain</u> motions from downhole arrays to investigate validity of 1D analysis

Large-Strain Site Response

- Use <u>large-strain</u> motions from downhole arrays to assess the accuracy of site response analysis for large-intensity, design level ground motions
- Strata Tool for Site Response Analysis
 - Open-source code for site response analysis that provides unique capabilities

Evaluating Site Response Analysis

Issues with surface array:

- Difficult to find rock outcrop near soil site
- Rock site has its own site response

Downhole array:

- Most direct observation of site response
- Kik-Net arrays in Japan, arrays in other parts of the world

Evaluating Site Response Analysis

Downhole Array Sites

Treasure Island Response

Transfer Function

Amplification Factor

How can we confirm resonant frequencies at a site that is not a downhole array??

Horizontal to Vertical Spectral Ratio (HVSR)

Bonnefoy-Claudet et al. (2006)

- Peak in HVSR coincides with first mode frequency of site
- HVSR can be measured from noise as part of site characterization with a single 3-component sensor

Treasure Island Response

Transfer Function

HVSR

Peak in HVSR spectrum (f_{HV}) is consistent with observed TF and predicted TF

Transfer Functions and HVSR

IBRH13 (Kik-Net Japan) EuroSeisTest (Greece)

Treasure Island (N. California) Garner Valley (S. California)

24 of 31 sites analyzed (77%) showed consistency between peaks in observed TF, predicted TF, and f_{HV}

13

Transfer Functions and HVSR

(Kik-Net Japan)

HRSH03 (Kik-Net Japan)

7 of 31 sites analyzed (23%) showed inconsistency between peaks in observed TF, predicted TF, and f_{HV}

Observations

- Characteristics of sites modeled well by 1D analysis
 - These sites have a clear HVSR peak that is consistent with the theoretical TF from the Vs profile
 - These sites tends to have a Vs contrast within the profile

Tao and Rathje (2019) accepted Soil Dynamics and Earthquake Eng.

Observations

- Sites not modeled well by 1D analysis have inconsistent HVSR peak or no peak
 - Inaccurate Vs profile? Basin effects? Topographic effects?

HVSR is an important component of a seismic site characterization

Outline

Accuracy of 1D Site Response Analysis

 Use <u>small-strain</u> motions from downhole arrays to investigate validity of 1D analysis

Large-Strain Site Response

- Use <u>large-strain</u> motions from downhole arrays to asses the accuracy of site response analysis for large-intensity, design level ground motions
- Strata Tool for Site Response Analysis
 - Open-source code for site response analysis that provides unique capabilities

Strata and

DeepSoil

Large-Strain Site Response

- Analyze downhole arrays using:
 - Equivalent-linear (EQL) analysis
 - Nonlinear (NL) analysis
 - EQL analysis with frequency-dependent properties (EQL-FD)
 - EQL analysis with κ scaling
- Compare predicted and observed amplification of spectral acceleration (AF)
- Consider low-intensity and large-intensity motions

NL analysis

B

small G/G_{max} ; *large* Damping

Issue: over-damping of high frequencies when large strains are induced

Α

EQL with Frequency Dependent Properties (EQL-FD)

<u>Concept</u> \rightarrow Convert frequency-dependence of shear strains to frequency-dependence of G/G_{max} and Damping via nonlinear material curves

EQL-FD Physical Justification

High frequencies represent shear stress reversals that are stiffer and have less damping

(Assimaki and Kausel 2002)

Kappa (ĸ)

High frequency spectral decay parameter (κ)

(Ktenidou. et. al 2013)

FAS(f)
$$\propto \exp(-\pi \cdot \kappa \cdot f)$$

"Site κ "

Kappa (κ) Relationship with Damping

Surface

	Soil Site <i>Vs</i> , D, γ
ALC: NO	Bedrock

$$\kappa_{o,surf} = \kappa_{o,base} + \Delta \kappa_{soil}$$
$$\kappa_{o,surf} = \kappa_{o,base} + \int \frac{2 \cdot D}{V_s} dz$$

Base rock

D = damping profile V_s = shear wave velocity profile

- κ_o controls high frequency spectral shape of shaking
- κ_o is a measure of damping at a site
- κ_o can be measured directly from ground motion recordings

Downhole Array Sites

Stokoe & Darendeli (2001) G/G_{max} and D curves

Zalachoris and Rathje (2015) ASCE JGGE

Response Spectrum Amplification

Site: IBRH13 Vs30 = 335 m/s

Amplification Residuals

Residual = $InAF_{observed} - InAF_{calculated} = In(Obs/Calc)$

Mean Amplification Residuals

Residual = $InAF_{observed} - InAF_{calculated}$

27

Mean AF Residuals - EQL

Computed max shear strain (γ_{max}) is a better indicator of residuals across sites

Aggregated Residuals - EQL

Mean AF Residuals

Residuals as a function of computed γ_{max} and period

- Under-prediction by EQL and NL for T < 0.5 s & γ_{max} > 0.1%
- Slight over-prediction by EQL-FD at T < 0.2 s due to use of small-strain damping (D_{min}) at high frequencies

sec

Consideration of Shear Strength (τ_{max})

• Vs and G/G_{max} imply a τ vs. γ curve

Shear Strength Correction

Modify G/G_{max} for all layers with induced γ_{max} greater than 0.1% to be consistent with $\phi \sim 30^{\circ}$

Mean AF Residuals

- Strains reduced by modified G/G_{max}
- Under-prediction still exists for EQL and NL
- EQL-FD relatively unchanged

Zalachoris and Rathje (2015) ASCE JGGE

Base Isolation Effect for 1D Analysis

Surface Spectra

Zalachoris (2014) PhD Dissertation

Observations

- EQL and NL analyses <u>under-predict</u> motions at γ_{max} > 0.1% and T < 0.4 to 0.5 s
 - Strength correction for G/G_{max} improves results somewhat but does not remove bias
 - Under-prediction may be as much as 50%
- EQL-FD <u>over-predicts</u> motions at T < 0.2 s

– Over-prediction may be as much as 25%

- 1D EQL or NL analysis should <u>not</u> be used when $\gamma_{max} > 0.5\%$
 - EQL-FD preferred…

...or perhaps kappa can help...

Theoretical Effect of Soil Nonlinearity on κ

- Hypothetical profile: 100 m; V_s 400 m/s
- Site response analysis for a range of input motions (R = 5 to 100 km)
- Compute κ (slope) for surface motion calculated by EQL analysis

к vs. Induced Strain

Do earthquake recordings confirm this relationship?

κ Observations: Strain Dependence

Site-Specific Results

Aggregated Results

2,638 motions, 32 sites

Agreement between small-strain and largestrain κ_0 indicates that damping should remain at D_{min} at high frequencies for large strain motions

Xu (2019) PhD Dissertation

EQL Analysis with κ Scaling

For non-downhole array sites, κ_{target} can be derived from smallstrain recordings or from empirical relationships (Xu et al. 2019)

EQL Analysis with κ Scaling

Apply S(f) $FAS(f) = FAS_{EOL}(f) \cdot S(f)$

Compute Response Spectrum

Compute residuals for surface response spectra (Sa) for over 400 motions from 6 downhole array sites

Sa residuals: Aggregated Results

Observations

- Consistent with previous study, EQL analyses <u>under-predict</u> motions at γ_{max} > 0.1% and T < 0.4 to 0.5 s (f > 3 Hz)
- EQL-FD <u>over-predicts</u> motions at T < 0.2 s (> 5 Hz)
- κ scaling provides the most unbiased results over a broad frequency / strain range
- EQL or NL analysis should <u>not</u> be used when $\gamma_{max} > 0.5\%$

– EQL-FD or κ correction required, κ scaling preferred

Outline

- Accuracy of 1D Site Response Analysis
 - Use <u>small-strain</u> motions from downhole arrays to investigate validity of the 1D analysis
- Large-Strain Site Response
 - Develop approaches that improve predictions of site response at large strains

Strata Tool for Site Response Analysis

- Time series and RVT input motions
- Performs EQL, EQL-FD analyses
- Incorporates variability in the material properties through Monte Carlo simulations

Site Response Software: Strata

- Open-source (i.e., free), user-friendly site response program
 - Kottke and Rathje (2008) PEER 2008/10 Report
 - https://github.com/arkottke/strata
- Frequency domain wave propagation

 EQL and EQL-FD analysis
- Input motions characterized by
 - Time series
 - Random vibration theory (RVT)
- Statistical variation of site properties
 - Layering, Vs, nonlinear properties, etc.

Y:\doc\confere	ces\201203-strata-demonstration\example\sch-example.strata - Strata			
<u>F</u> ile <u>E</u> dit <u>T</u> ool	<u>W</u> indow <u>H</u> elp			
General Settings	Soil Types Soil Profile Motion(s) Output Specification Compute Results			
Project		Type of Analysis		
Title:	Sylmar County Hospital	Method: Equivalent Linear (EQL) 🔻		
Notes:	Ι	Approach: Time Series 💌		
		Vary the properties		
		Site Property Variation		
		Number of realizations: 100 🗼		
		Vary the nonlinear properties		
		shear-modulus reduction curve		
		damping of the bedrock		
		Vary the site profile		
		shear-wave velocity layer thickness depth to bedrock		
		Calculation Parameters		
		Error tolerance: 2.0 % 🚔		
		Maximum number of iterations: 10 🚔		
		Effective strain ratio: 0.65 🚔		
		Layer Discretization		
Filename prefix:	sch-	Maximum frequency: 20 Hz		
Units:	Metric Note: only changes labels and gravity, no unit conversion.	Wavelength fraction: 0.20		
	Save motion data within the input file.	Disable auto-discretization		

45

RVT Site Response Analysis

Time Series Analysis

RVT Analysis

Comparison with Time Series (TS) Analysis

Site Vs = 400 m/s, Variable height (H) and EQ Magnitude TS represents average of 100 input motions

Input Motion Specification for RVT

- Requires Fourier Amplitude Spectrum (FAS) and duration (D_{gm})
- Input FAS defined via:
 - Response spectrum compatible FAS from GMPE using inverse RVT

- Seismological parameters (e.g., M, R, stress drop $\Delta \sigma$)
- User-defined FAS

Conclusions

- HVSR is an important component of a seismic site characterization and should always be included
 - The frequency of HVSR peak should be consistent with the theoretical Transfer Function from the Vs profile
- One-dimensional site response analysis can underpredict ground motions at T < 0.5 s for γ_{max} larger than about 0.1%
 - True for both equivalent-linear and nonlinear analyses
 - Strength correction for G/G_{max} improves results somewhat by reducing strains but does not remove bias
 - EQL and NL should not be used for $\gamma_{max} > 0.5\%$

Conclusions

- Equivalent-linear analysis with frequency dependent properties (EQL-FD) does not underpredict motions
 - Can over-predict motions at T < 0.2 s
- κ scaling of the surface motion from EQL analysis provides the most unbiased site response results for large-strain analysis ($\gamma_{max} > 0.5\%$)
- Open-source Strata software provides unique capabilities for site response analysis
 - <u>https://github.com/arkottke/strata</u>