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Site Effects and Site Response Analysis
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Competent bedrock

Soil site

Source

Site effect rock station

soil station

soil 
amplification

1985 Mexico City Earthquake

SCT UNAM



One-Dimensional (1D) Site Response Analysis
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sin 𝑖𝑖1
𝛽𝛽1

= sin 𝑖𝑖2
𝛽𝛽2

i2

i1
ρ1,µ1,β1
ρ2,µ2,β2

SH waves

SH1D Assumption
• All layer boundaries are horizontal and extend infinitely
• Soil response is predominantly controlled by vertically 

propagating, horizontally polarized SH waves 

1D approximation
𝛽𝛽1 < 𝛽𝛽2



One-Dimensional (1D) Site Response Analysis
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Soil Model 
Vs, D, γ

Bedrock

Input motion

Predicted
surface motion

Inverse FFT

Transfer Function
𝑓𝑓𝑓𝑓𝑓𝑓 (soil model)

FFT

𝐹𝐹𝐹𝐹𝑆𝑆surf =
𝐹𝐹𝐹𝐹𝑆𝑆base × 𝑇𝑇𝐹𝐹

Frequency Domain (Shake-type) Approach

TF = FASsurf / FASbase



Modeling Nonlinear Soil Behavior
Nonlinear hysteretic 

soil behavior
Equivalent-linear soil properties

NL analysisEQL analysis

Frequency-dependent shear strains

EQL-FD 
analysis
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DeepSoilStrata

Strata



Outline 

• Accuracy of 1D Site Response Analysis
– Use small-strain motions from downhole arrays to 

investigate validity of 1D analysis
• Large-Strain Site Response

– Use large-strain motions from downhole arrays to 
assess the accuracy of site response analysis for 
large-intensity, design level ground motions

• Strata Tool for Site Response Analysis
– Open-source code for site response analysis that 

provides unique capabilities 
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Evaluating Site Response Analysis
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Issues with surface array:
• Difficult to find rock outcrop 

near soil site
• Rock site has its own site 

response 

Downhole array:
• Most direct observation of site 

response
• Kik-Net arrays in Japan, arrays in 

other parts of the world 



Evaluating Site Response Analysis
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Base recording

Surface recording or 
prediction

TF = FASsurface / FASbase

AF = Sasurface / Sabase

Transfer Function

Amplification Factor

Observed Response Predicted Response 

AF=Sapred, surf / Sabase

Transfer Function

Amplification Factor

TF = 𝑓𝑓𝑓𝑓𝑓𝑓 (soil model)



Downhole Array Sites
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IBRH13
(Kik-Net Japan)

EuroSeisTest
(Greece)

Treasure Island
(N. California)

Garner Valley
(S. California)

IWTH12
(Kik-Net Japan)

HRSH03
(Kik-Net Japan)



Treasure Island Response
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How can we confirm resonant frequencies at a 
site that is not a downhole array??



Horizontal to Vertical Spectral Ratio (HVSR)
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H and V Recordings

Bonnefoy-Claudet et al. (2006)

H
/V

 R
at

io

Time Series Fourier Spectra (FAS)

HVSR

• Peak in HVSR coincides with first mode frequency of site
• HVSR can be measured from noise as part of site 

characterization with a single 3-component sensor 



Treasure Island Response

12

Peak in HVSR spectrum (fHV) is consistent with 
observed TF and predicted TF

Transfer Function HVSR

fHV

fHV



Transfer Functions and HVSR
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IBRH13
(Kik-Net Japan)

EuroSeisTest
(Greece)

Treasure Island
(N. California)

Garner Valley
(S. California)

Transfer 
Fxn

HVSR

24 of 31 sites analyzed (77%) showed consistency between 
peaks in observed TF, predicted TF, and fHV

fHV fHV fHV fHV



Transfer Functions and HVSR
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Transfer Fxn

HVSR

7 of 31 sites analyzed (23%) showed inconsistency between 
peaks in observed TF, predicted TF, and fHV

IWTH12
(Kik-Net Japan)

HRSH03
(Kik-Net Japan)

fHV No fHV



Observations
• Characteristics of sites modeled well by 1D analysis 

– These sites have a clear HVSR peak that is consistent 
with the theoretical TF from the Vs profile

– These sites tends to have a Vs contrast within the profile

15Tao and Rathje (2019) accepted Soil Dynamics and Earthquake Eng.



Observations
• Sites not modeled well by 1D analysis have 

inconsistent HVSR peak or no peak
– Inaccurate Vs profile? Basin effects? Topographic effects?

16

HVSR is an important component of a seismic 
site characterization



Outline 

• Accuracy of 1D Site Response Analysis
– Use small-strain motions from downhole arrays to 

investigate validity of 1D analysis
• Large-Strain Site Response

– Use large-strain motions from downhole arrays to 
asses the accuracy of site response analysis for 
large-intensity, design level ground motions

• Strata Tool for Site Response Analysis
– Open-source code for site response analysis that 

provides unique capabilities 
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Large-Strain Site Response

• Analyze downhole arrays using:
– Equivalent-linear (EQL) analysis
– Nonlinear (NL) analysis 
– EQL analysis with frequency-dependent              

properties (EQL-FD)
– EQL analysis with 𝜅𝜅 scaling

• Compare predicted and observed amplification 
of spectral acceleration (AF)

• Consider low-intensity and large-intensity 
motions

18

Strata and 
DeepSoil



EQL and NL Analysis
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NL analysis

EQL analysis

Issue: over-damping of high frequencies 
when large strains are induced

Kaklamanos et 
al. (2015)



EQL with Frequency Dependent Properties (EQL-FD)
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Complete spectrum
Smooth Spectrum

Concept → Convert frequency-dependence of shear strains to 
frequency-dependence of G/Gmax and Damping via  nonlinear 
material curves

Shear Strain
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Frequency-
Dependent Shear 
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Nonlinear Material 
Curves Frequency-
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EQL-FD Physical Justification
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High frequencies represent shear stress reversals 
that are stiffer and have less damping

(Assimaki and Kausel 2002) 



Kappa (𝜅𝜅)
High frequency spectral decay parameter (𝜿𝜿)
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𝜿𝜿𝟎𝟎: 𝜅𝜅 at R = 0

(Ktenidou. et. al 2013)

Fourier Amplitude Spectrum (FAS)

FAS(f) ∝ exp(−𝜋𝜋 � 𝜅𝜅 � 𝑓𝑓)

“Site 𝜅𝜅”

Frequency (Hz)



Kappa (𝜅𝜅) Relationship with Damping
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Surface

Base rock

𝜅𝜅𝑜𝑜,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜅𝜅𝑜𝑜,𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 + ∆𝜅𝜅𝑠𝑠𝑜𝑜𝑖𝑖𝑠𝑠

𝜅𝜅𝑜𝑜,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜅𝜅𝑜𝑜,𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 + �
2 � 𝐷𝐷
𝑉𝑉𝑠𝑠

𝑑𝑑𝑑𝑑

𝐷𝐷 = damping profile
𝑉𝑉𝑠𝑠 = shear wave velocity profile

• 𝜅𝜅𝑜𝑜 controls high frequency spectral shape of shaking
• 𝜅𝜅𝑜𝑜 is a measure of damping at a site
• 𝜅𝜅𝑜𝑜 can be measured directly from ground motion recordings



Downhole Array Sites
Stokoe & Darendeli (2001) G/Gmax and D curves

24Zalachoris and Rathje (2015) ASCE JGGE



Response Spectrum Amplification
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Amplification Residuals
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Residual = lnAFobserved – lnAFcalculated = ln(Obs/Calc)
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Mean Amplification Residuals
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PGAbase = 0.06 g
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Residual = lnAFobserved – lnAFcalculated
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Mean AF Residuals - EQL
Computed max shear strain (γmax) is a better indicator of residuals across sites
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Aggregated Residuals - EQL
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Mean AF Residuals
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Under-
prediction

Over-
prediction

Residuals as a function of computed 
γmax and period

Zalachoris and Rathje 
(2015) ASCE JGGE

• Under-prediction by EQL and 
NL for T < 0.5 s & γmax > 0.1%

• Slight over-prediction by EQL-
FD at T < 0.2 s due to use of 
small-strain damping (Dmin) at 
high frequencies

EQL

NL

EQL-
FD
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Consideration of Shear Strength (τmax)
• Vs and G/Gmax imply a τ vs. γ curve

τ = 𝑠𝑠𝑠𝑠𝑠𝑠 · γ = 𝐺𝐺𝑚𝑚𝑏𝑏𝑚𝑚 · (
𝐺𝐺

𝐺𝐺𝑚𝑚𝑏𝑏𝑚𝑚
)@𝛾𝛾 · γ

= ρ · 𝑉𝑉𝑠𝑠2 · (
𝐺𝐺

𝐺𝐺𝑚𝑚𝑏𝑏𝑚𝑚
)@𝛾𝛾 · γ
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Shear Strength Correction

Zalachoris and Rathje 
(2015) ASCE JGGE

Generic

Strength 
Corrected

Modify G/Gmax for all layers with induced γmax greater than 0.1% 
to be consistent with φ ~ 30°
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Mean AF 
Residuals

• Strains reduced by 
modified G/Gmax

• Under-prediction 
still exists for EQL 
and NL

• EQL-FD relatively 
unchanged

Zalachoris and Rathje 
(2015) ASCE JGGE

Under-
prediction

Over-
prediction

EQL

NL

EQL-
FD

Strength CorrectedOriginal

γmax=0.5%
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Base Isolation Effect for 1D Analysis

Zalachoris (2014) PhD Dissertation
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Observations

• EQL and NL analyses under-predict motions 
at γmax > 0.1% and T < 0.4 to 0.5 s
– Strength correction for G/Gmax improves results 

somewhat but does not remove bias
– Under-prediction may be as much as 50%

• EQL-FD over-predicts motions at T < 0.2 s
– Over-prediction may be as much as 25%

• 1D EQL or NL analysis should not be used 
when γmax > 0.5%
– EQL-FD preferred… 

35
…or perhaps kappa can help…



Theoretical Effect of Soil Nonlinearity on 𝜅𝜅
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• Hypothetical profile: 100 m; 𝑉𝑉𝑠𝑠 400 m/s
• Site response analysis for a range of input motions (R = 5 to 100 km)
• Compute 𝜿𝜿 (slope) for surface motion calculated by EQL analysis 
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𝜅𝜅 Observations: Strain Dependence
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Site-Specific Results Aggregated Results
2,638 motions, 32 sites

Small Strain
Large Strain

Agreement between small-strain and large-
strain 𝜅𝜅0 indicates that damping should 

remain at Dmin at high frequencies for large 
strain motions 

Strain (%)

Strain (%)

Strain (%)

Xu (2019) PhD Dissertation



EQL Analysis with 𝜅𝜅 Scaling
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EQL Analysis

𝜿𝜿𝑬𝑬𝑬𝑬𝑬𝑬 =0.11 s

𝜿𝜿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 =0.068 s

Surface FAS

Δ𝜅𝜅 = 𝜅𝜅𝑡𝑡𝑏𝑏𝑠𝑠𝑡𝑡𝑏𝑏𝑡𝑡 − 𝜅𝜅𝐸𝐸𝐸𝐸𝐸𝐸 𝐒𝐒 𝒇𝒇 = exp(−𝜋𝜋 � Δ𝜅𝜅 � 𝑓𝑓)

Define Scale Factor (S)

For non-downhole array sites, 𝜅𝜅𝑡𝑡𝑏𝑏𝑠𝑠𝑡𝑡𝑏𝑏𝑡𝑡 can be derived from small-
strain recordings or from empirical relationships (Xu et al. 2019)

Recording

EQL

Frequency dependent
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Apply S(𝒇𝒇)
FAS 𝑓𝑓 = 𝐹𝐹𝐹𝐹𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸(𝑓𝑓) � S 𝑓𝑓

𝜿𝜿 scaled

EQL-FD

Compute Response 
Spectrum

EQL

EQL-FD
𝜿𝜿 scaled

Compute residuals for surface response spectra (Sa) 
for over 400 motions from 6 downhole array sites

EQL Analysis with 𝜅𝜅 Scaling

Recording



Sa residuals: Aggregated Results

40

𝜿𝜿 Scaling

EQL: Strength 
Corrected

EQL-FD

Xu (2019) PhD Dissertation



Observations

• Consistent with previous study, EQL analyses 
under-predict motions at γmax > 0.1% and T < 0.4 
to 0.5 s (f > 3 Hz)

• EQL-FD over-predicts motions at T < 0.2 s (> 5 
Hz)

• 𝜅𝜅 scaling provides the most unbiased results 
over a broad frequency / strain range 

• EQL or NL analysis should not be used when 
γmax > 0.5%
– EQL-FD or 𝜅𝜅 correction required, 𝜅𝜅 scaling preferred 
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Outline 
• Accuracy of 1D Site Response Analysis

– Use small-strain motions from downhole arrays to 
investigate validity of the 1D analysis

• Large-Strain Site Response
– Develop approaches that improve predictions of site 

response at large strains 
• Strata Tool for Site Response Analysis

– Time series and RVT input motions
– Performs EQL, EQL-FD analyses
– Incorporates variability in the material properties 

through Monte Carlo simulations
42



Site Response Software: Strata
• Open-source (i.e., free), user-friendly site 

response program 
– Kottke and Rathje (2008) PEER 2008/10 Report 
– https://github.com/arkottke/strata

• Frequency domain wave propagation
– EQL and EQL-FD analysis

• Input motions characterized by
– Time series
– Random vibration theory (RVT)

• Statistical variation of site properties
– Layering, Vs, nonlinear properties, etc.

43

https://github.com/arkottke/strata




RVT Site Response Analysis
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𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚 = 𝑎𝑎𝑠𝑠𝑚𝑚𝑠𝑠 × 𝑝𝑝𝑠𝑠𝑎𝑎𝑝𝑝 𝑓𝑓𝑎𝑎𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓

From statistical model of 
distribution of peaks

Time Series Analysis RVT Analysis

𝐷𝐷𝑡𝑡𝑚𝑚



Comparison with Time Series (TS) Analysis

46
Wang and Rathje (2016, 2018) BSSA

Site Vs = 400 m/s, Variable height (H) and EQ Magnitude
TS represents average of 100 input motions



Input Motion Specification for RVT
• Requires Fourier Amplitude Spectrum (FAS) and 

duration (𝐷𝐷𝑡𝑡𝑚𝑚)
• Input FAS defined via:

– Response spectrum compatible FAS from GMPE using 
inverse RVT

– Seismological parameters (e.g., M, R, stress drop ∆σ)
– User-defined FAS

logT

Sa

Frequency (Hz)
FA

S



Conclusions 
• HVSR is an important component of a seismic site 

characterization and should always be included
– The frequency of HVSR peak should be consistent with 

the theoretical Transfer Function from the Vs profile
• One-dimensional site response analysis can under-

predict ground motions at T < 0.5 s for γmax larger 
than about 0.1%
– True for both equivalent-linear and nonlinear analyses
– Strength correction for G/Gmax improves results 

somewhat by reducing strains but does not remove bias
– EQL and NL should not be used for γmax > 0.5%
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Conclusions 
• Equivalent-linear analysis with frequency 

dependent properties (EQL-FD) does not under-
predict motions
– Can over-predict motions at T < 0.2 s

• 𝜅𝜅 scaling of the surface motion from EQL analysis 
provides the most unbiased site response results 
for large-strain analysis  (γmax > 0.5%)

• Open-source Strata software provides unique 
capabilities for site response analysis
– https://github.com/arkottke/strata

49

https://github.com/arkottke/strata
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