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My Motivation – “Living” with a fault…

Hayward Fault Zone
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• A brief discussion of performance of mechanically 
stabilized embankments

• Discuss in detail the issues related to the analysis 
and design of retaining structures and basements
– Observed performance
– Current Design Methods
– Experimental Results
– Numerical Analyses/Challenges
– Recommendations
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Objectives
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Seismic Performance of Mechanically Stabilized 
Walls and Embankments



Nisqually 2001, Tacoma, WA
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Block Facing Walls



Mechanically stabilized viaduct approach on improved ground – Seattle, 2001
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Reinforced Earth™



Chile – 2010 – excellent performance
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Old New
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Our Approach: Physical and Numerical Modeling

Use Physical Modeling  to Verify Failure Mechanisms

• Why centrifuge?  
– Good scaling relationships
– Repeatability
– Reproducibility
– Cost effectiveness

• UC Davis centrifuge: 
– 9.1m radius, 4,500Kg 

maximum payload, area of 
bucket 4m2
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How does the centrifuge work?

Model ContainerAbout 1 gAbout 2 gAbout 36 g
The centrifugal force 

increases the 
“weight” of the model 
to simulate weight of 
a full scale structure 

CiviStructures

To simulate earthquakes, we have 
to shake the models while they 

spin

36 g Centrifugal 
Force

Courtesy Prof. Bruce 
Kutter
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See: Zornberg, J.G., Sitar, N., and Mitchell, J.K. 1998. “Performance of Geosynthetically
Reinforced Soil Structures at Failure,” J. of Geotechnical and Geoenvironmental Engrg., ASCE,Vol. 
124, No. 8, pp. 670-683 10.1061/(ASCE)1090-0241(1998)124:8(670)

Static Centrifuge Experiments
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https://doi.org/10.1061/(ASCE)1090-0241(1998)124:8(670)


Seismic Centrifuge Experiments

Height:   15.2 cm (model: 19.2g), 7.3 m (proto)
Relative Density:   75%

Reinforcement: Tru-Grid (70%H-right, 90%H-left)
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Summary

• Mechanically stabilized embankments perform very well, 
especially those using geosynthetic grids or fabric

• Conventional design appears quite adequate for most 
applications and seismic design guidelines are extremely 
conservative

• An important element is close spacing (18-24 in.) of the 
reinforcement layers to achieve good compaction, i.e. 3ft – 90 
cm between reinforcements is too much for good compaction.
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Nova-Roessig, L. and Sitar, N., “Centrifuge Model Studies of the Seismic Response of Reinforced Soil Slopes”
Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 3, March 1, 2006, DOI:
10.1061/(ASCE)1090-0241(2006)132:3(388)

https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(388)


• Discuss in detail the issues related to the analysis 
and design of retaining structures and basements
– Observed performance
– Current Design Methods
– Experimental Results
– Numerical Analyses/Challenges
– Recommendations
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Conventional Retaining Structures and Basements



Types of Retaining Structures

Flexible/Yielding

• Level ground

• Sloping ground
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– “nonyielding” – walls that do not satisfy the 
movement condition
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• Confusion regarding the type of analysis to use, 
especially the yielding and non-yielding designation

• ?... recommendations: e.g FEMA 750
– “In the past, it was common practice for geotechnical engineers to 

reduce the instantaneous peak by a factor from 0.5 to 0.7 to 
represent an average seismic coefficient for determining the 
seismic earth pressure on a wall. …
…This approach can result in confusion on the magnitude of the 
seismic active earth pressure and, therefore, is not recommended. 
Any further reduction to represent average rather than 
instantaneous peak loads is a structural decision and must be an 
informed decision made by the structural designer.”

Present Design Guidance (such as it is…)
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Delphi: polygonal wall and temple of Apollo 548 B.C., temple destroyed by 
quake 373 B.C., other major quakes 551, and 1870 A.D.

Past Performance
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Taiwan, 1999

A lot of problems with old walls on
sloping ground and with sloping 
backfill. No problems with base-
ments and flat ground ….
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Wenchuan – 2008 – Traditional retaining structures 

© N. Sitar, UC Berkeley 2018



© N. Sitar, UC Berkeley 2018

Zipingpu Dam, China 2008
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Favorable performance under seismic load
Crest Acceleration at Zipingpu Dam during Wenchuan Earthquake
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Crest Settlement 
~ 73 cm at center



© N. Sitar, UC Berkeley 2018

Photo by K. Mosalam

Crack repair in progress, expansion 
seals in process of being replaced
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Spillway



Chile – 2010
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Great Tohoku Earthquake – 2011

• No reported failures of 
underground structures/basements

• Segmented geosynthetically
reinforced structures performed 
well

• Minor damage to conventional 
retaining walls on sloping ground

Source: J. Wartman, UW

Source: J. Wartman, UW

Source: J. Wartman, UW

© N. Sitar, UC Berkeley 2018



G. Candia - RCINDIM - National Research Center for Integrated Natural Disaster Management 
CONICYT/FONDAP/15110017

Iquique – 2014 – cantilever walls without footings
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Railway Overpass, SR 1 at Kekerengu, Kaikoura Earthquake
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Railway Overpass, SR 1 south of Kekerengu, Kaikoura Earthquake
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U-Wall Damage During 1971 San Fernando Earthquake, Clough & 
Fragaszy (1977)
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Typical Methods of Analysis

Mononobe and Matsuo, 1929

Mononobe and Okabe (M-O)

• Assumes a fully developed Coulomb wedge
• Force applied at 1/3H

𝑃𝑃𝐴𝐴𝐴𝐴 =
1
2 . 𝛾𝛾.𝐻𝐻2. 1 − 𝑘𝑘𝑣𝑣 .𝐾𝐾𝐴𝐴𝐴𝐴
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Modified from Mononobe
and Matsuo, 1929

Seed and Whitman, 1970

• Solution is asymptotic to M-O for PGA < 0.4g
• Seismic earth pressure increment at 0.6H

∆𝑃𝑃𝐴𝐴𝐴𝐴 =
1
2 .

3
4 . 𝑘𝑘ℎ . 𝛾𝛾.𝐻𝐻2
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Wood (1973) – Non-Yielding (Rigid) Walls

• Homogeneous linear elastic soil and connected to a rigid base
• Seismic earth pressure increment at 0.6H

∆𝑃𝑃𝐴𝐴𝐴𝐴 = 𝐹𝐹𝑝𝑝. 𝑘𝑘ℎ . 𝛾𝛾.𝐻𝐻2 ,𝐹𝐹𝑝𝑝 = 0.9 1.1

© N. Sitar, UC Berkeley 2018



Point of Load Application
Author Point of Application 

Mononobe-Okabe (1926-1929) 0.33H

Seed and Whitman (1970) 0.6H

Nandakumaran and Joshi (1973) <0.65H

Krishna et al. (1974) ~0.5H

Sherif et al. (1982) ~0.42H

Prakash and Brasavanna (1969) varies with acceleration

Ichihara and Matsuzawa (1973) varies with acceleration

Ortiz et al. (1983) varies, but higher than H/3

Woodward and Griffiths (1992) varies with acceleration

Steedman and Zeng (1990) varies, but higher than H/3

Mylonakis et al. (2007) 0.33H
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Younan and Veletsos (2000) – Elastic Solution f(stiffness & rotation)

a) Pressure 
Distribution

b) Point of Application of 
Dynamic Increment



Centrifuge Experiment
Geometry & Instrumentation Layout
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Centrifuge Modeling – Spinning and Shaking
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Results 
Earth Pressure Time History
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Typical Design Considerations (cont.)
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Typical Design Considerations
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Centrifuge Experiments
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Numerical Models - FLAC

Stiff Walls - Basements
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Effective Seismic Coefficient

Makdisi & Seed (1978)
[from Anderson et al. (2008)]

Seed & Idriss (1971)
[from Cetin et al. (2004)]© N. Sitar, UC Berkeley 2018
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Dynamic Earth Pressure Coefficient
Numerical and Centrifuge Model Results
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Conclusions

• Earth pressure during seismic loading increases with depth 
similar to static and the “inverse triangle” does not represent 
this condition

• Mononobe – Okabe solution is overly conservative at high PGA> 
0.4 - 0.5 g and fails to converge for high acceleration > 0.7 g 
with cohesionless soil.

• Our results show that for cantilever and stiff basement walls 
lateral earth pressure increment is insignificant for a large 
range of ground motions.  However, inertial forces on the walls 
have to be properly accounted for. 

• The height of the wall or depth of embedment should be 
considered for structures >6.5m
– More important for deeper structures
– Already used in other geotechnical earthquake engineering applications 

(e.g., seismic slope deformation, liquefaction)
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Recommendations for Design

1. Obtain PGA and use Seed & Whitman (1970)

2. Obtain PGA, reduce using NCHRP guidelines, 
and use Mononobe-Okabe method

3. Perform 1-D site response analysis, compute 
depth-averaged acceleration, and use 
Mononobe-Okabe method

4. Perform calibrated 2-D or 3-D dynamic 
analysis and compute demands on the structure
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