

LESSONS LEARNED FROM LARGE HIGHWAY PROJECTS – THE IMPORTANCE OF THE GEOTECHNICAL ENGINEER

GeoVirginia, 2018

David P. Shiells, P.E.

4/17/18

"The Big Dig"

- Total Project Cost \$14.6 billion
- Initial cost estimate \$6 billion
- 15 year duration (1991 to 2007)
- 200,000 vehicles per day
- Challenging ground conditions
- Innovative construction techniques

What Do We Remember ?

What Do We Remember ?

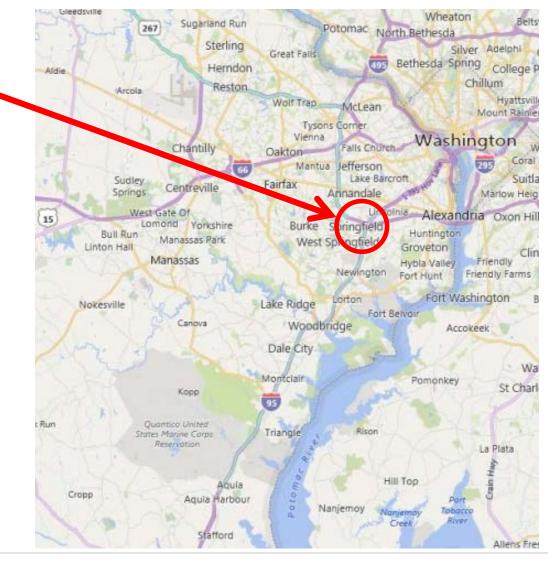
- Cost overruns
- Schedule delays
- Leaks
- Fatal collapse
- Lawsuits

"Accident in Boston's Big Dig Kills Woman in Car", NY Times, July 12, 2006

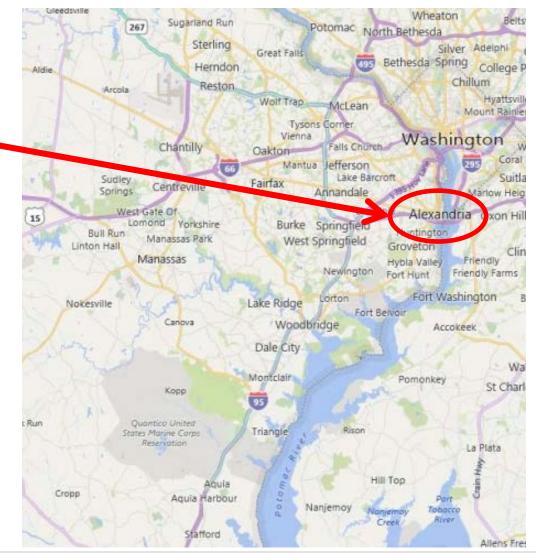
"Boston's Big Dig Buried in Cost Overruns", Wash. Post, April 12, 2000

"State, Contractors Settle Suit over Big Dig Failures", NPR, Jan. 23, 2008

"Big Dig Springs Big Leaks, Boston Herald", Oct. 15, 2015

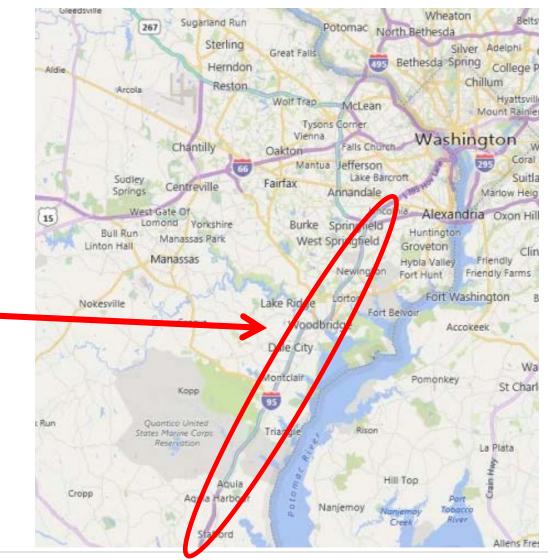

What Should We Remember ?

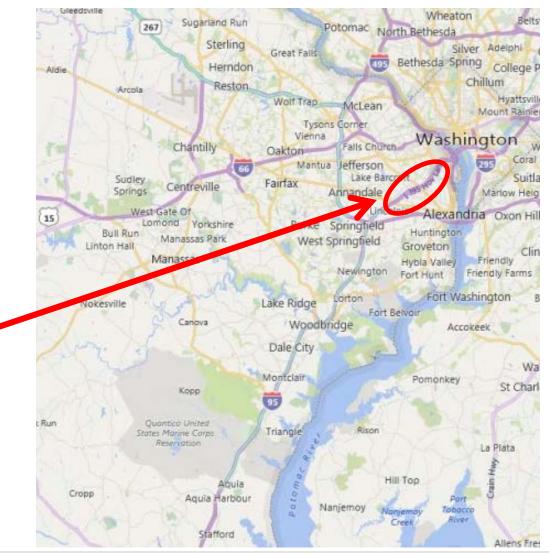
- Incredibly difficult construction
- Excavations 120 feet below ground
- Widest cable stay bridge in world
- Most extensive use of immersed tube tunnels in U.S.
- First jacked vehicle tunnels in U.S.
- First use of deep soil mixing on east coast
- 5 miles of slurry walls
- 16 million cy excavation
- Largest geotech. program in N. America



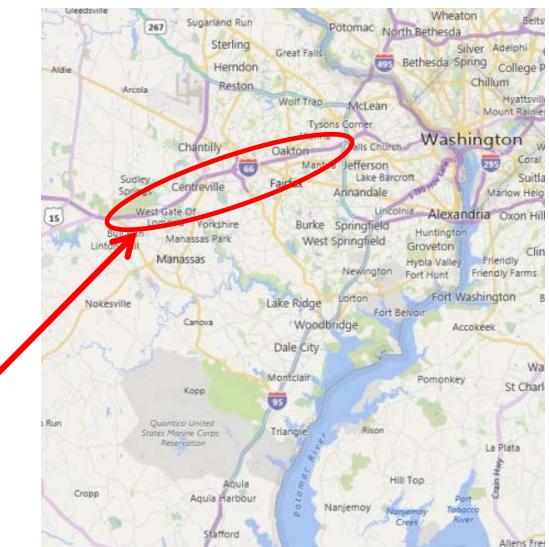
Springfield Interchange


• \$750 million

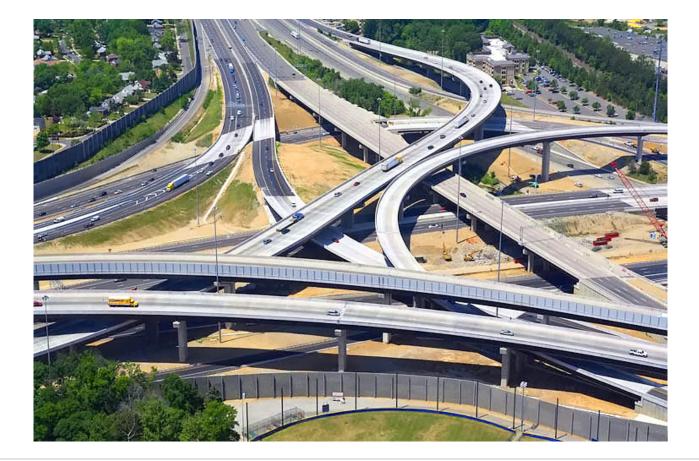

- **Springfield Interchange**
- \$750 million
- Woodrow Wilson Bridge
- \$2.5 billion


- **Springfield Interchange**
- \$750 million
- Woodrow Wilson Bridge
- \$2.5 billion
- I-495 Express Lanes
- \$1.3 billion

- \$750 million
- Woodrow Wilson Bridge
- \$2.5 billion I-495 Express Lanes
- \$1.3 billion
- I-95/I-395 Express Lanes
- \$925 million



- \$750 million
- Woodrow Wilson Bridge
- \$2.5 billion
 I-495 Express Lanes
- \$1.3 billion
- I-95/I-395 Express Lanes
- \$925 million
- I-395 Express Lanes -
- \$500 million

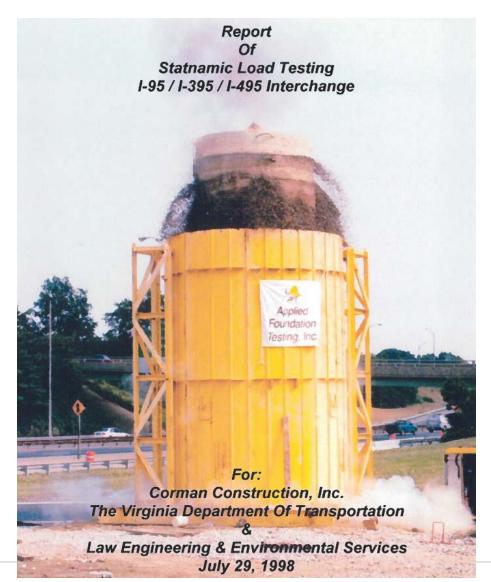

- \$750 million
- Woodrow Wilson Bridge
- \$2.5 billion
 I-495 Express Lanes
- \$1.3 billion
- I-95/I-395 Express Lanes
- \$925 million
- I-395 Express Lanes
- \$500 million I-66 Outside the Beltway
- \$2.3 billion

- First "Mega Project"
- Design-Bid-Build
- 7 phases (1999 to 2007)
- 430,000 vehicles per day
- 52 bridges
- 24 lanes at widest point

Complex Construction

VDOT

Geotechnical Program


- Consultant and In-house design
- Large diameter drilled shafts
- Drilled shaft test program
- Drilled shaft trial installations
- Potomac clays
- Bank run sand/gravel for MSE backfill
- On-site testing laboratory

Drilled Shaft Load Test Program


- Four test shaft locations
- 5' dia. drilled shafts
- Founded in IGM and granite
- Polymer slurry
- Osterberg load cells
- Statnamic testing
- Lateral tests for deflection
- Estimated cost savings of 25%

Potomac Clays

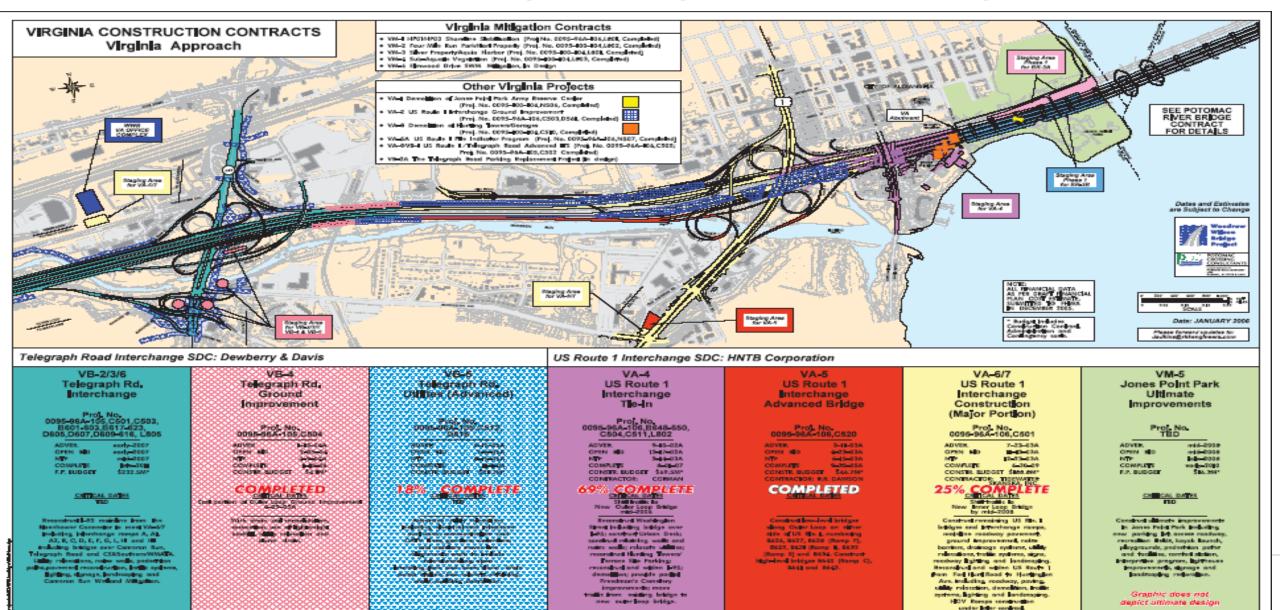
- I-95 NB and SB bridge over CSX rail
- Very flat slopes at east abutment
- Proposal to shorten bridge
- Potomac clay at east abutments
- Slope failure (1960s)
- New design retained longer spans

On-Site Soils as MSE Backfill

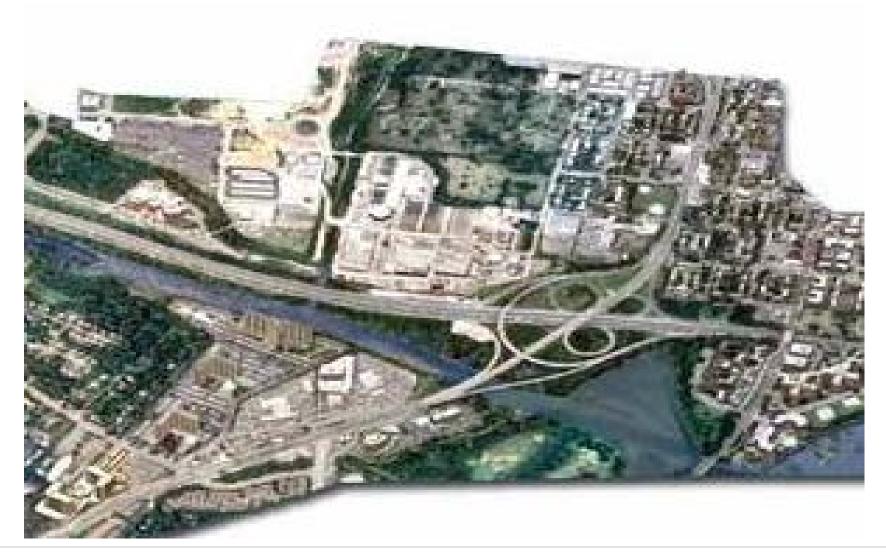
- Bank run sand and gravel
- Variability pockets of plastic clays

Lessons Learned

- Local geotechnical experience very important
- Experienced personnel required for drilled shaft inspections
- Inspector training (drilled shafts)
- Screening of on-site sand/gravel
- On-site laboratory was very efficient

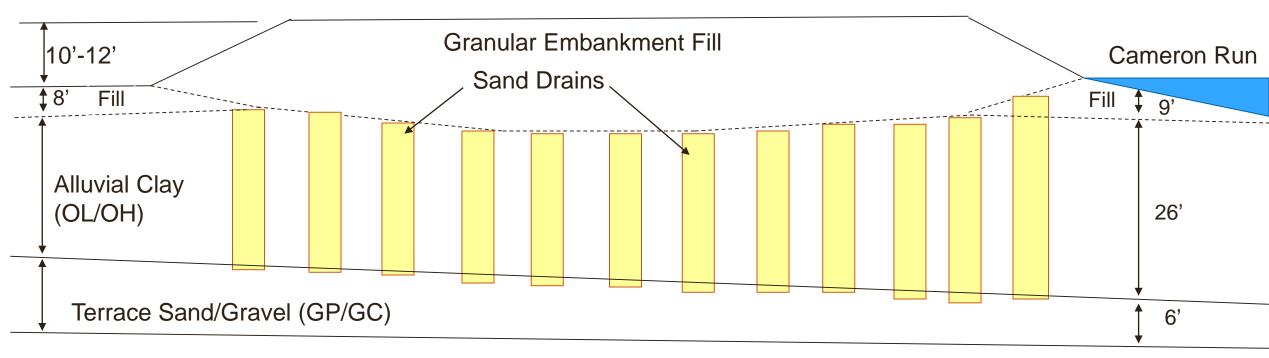

Woodrow Wilson Bridge

- \$2.5 billion
- Design-Bid-Build
- 43 Contracts (2000 to 2012)
- 4 Interchanges (VA/MD)
- Main bridge
- 7.5 miles
- 220,000 vehicles per day



Woodrow Wilson Bridge – Virginia Interchanges

Original I-95/Route 1 Interchange



New I-95/Route 1 Interchange

I-95/Route 1 Interchange

Original Construction

Potomac Clay (CH/CL)

Original 1960s Construction

- Muck-out (<15')
- Sand drains/surcharge (>15')
- Stability berms
- 12 to 14 months/stage
- 3 stages
- Settlements up to 5'
- Precast piles

Geotechnical Program

- Consultant and In-house design
- Test embankments
- Deep soil mixing (wet and dry)
- PV drains and surcharge
- Pile supported embankment
- Lightweight fills (LDCF and EPS)
- Densified aggregate piers
- Compaction grouting
- Trenchless crossings
- On-site testing laboratory

Geotechnical Challenges

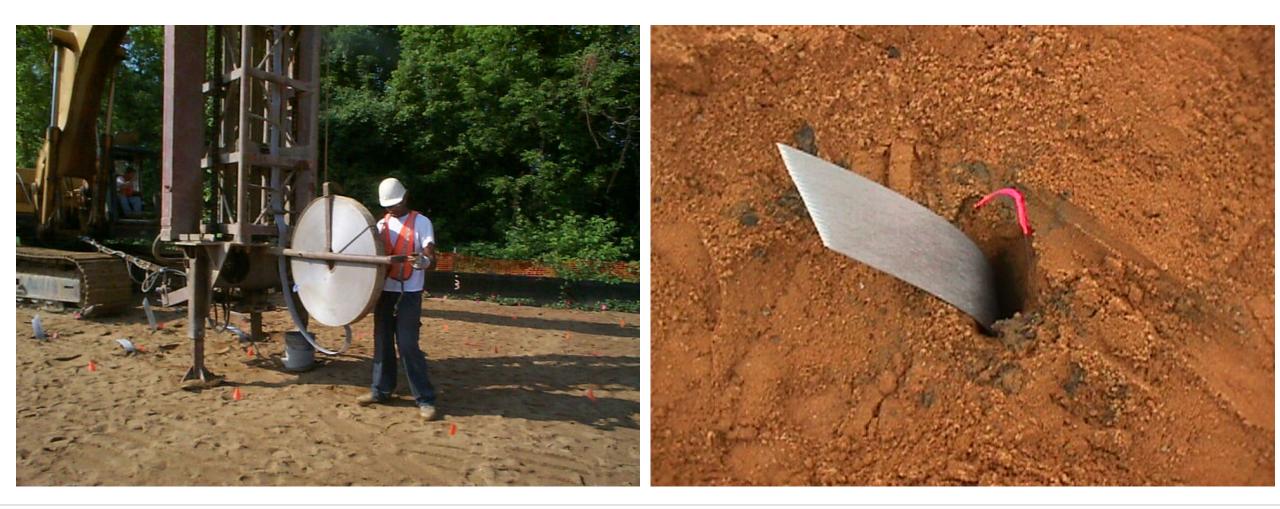
- Widen 10'-14' high embankment
- 10'-40' of very soft alluvial soils
- High ground water (tidal fluctuations)
- Variable treatments of exist. embankments
- Protection of existing piles/bridges
- Protection of existing utilities/extensions
- Maintenance of traffic
- Schedule (complete GI in less than 4 years)

- **Technical Considerations**
- Settlement of thick organic clays
- Differential settlements
- Long term creep settlements
- Stability of embankments/retaining walls
- Lateral squeeze
- Downdrag
- Constructability
- Vibrations/noise

Non-Technical Considerations

- Schedule
- Cost
- Maintenance of traffic
- Utilities
- Life cycle costs
- Risks
- Contractor availability
- Will it work ?

Lessons Learned


- Advance site characterization
- Consultation with technical experts
- Interviews with specialty contractors
- Test embankments
- Decision tables (schedule, cost risk, constructability, other)
- Interim milestones (incentives/disincentives)

Geotechnical Solutions

- Remove and replace
- Staged construction/surcharge
- Prefabricated vertical drains (PVDs)
- Lightweight fills
- Deep soil stabilization/mixing
- Column supported embankments
- Bridge/structure

Pre-fabricated Vertical Drains

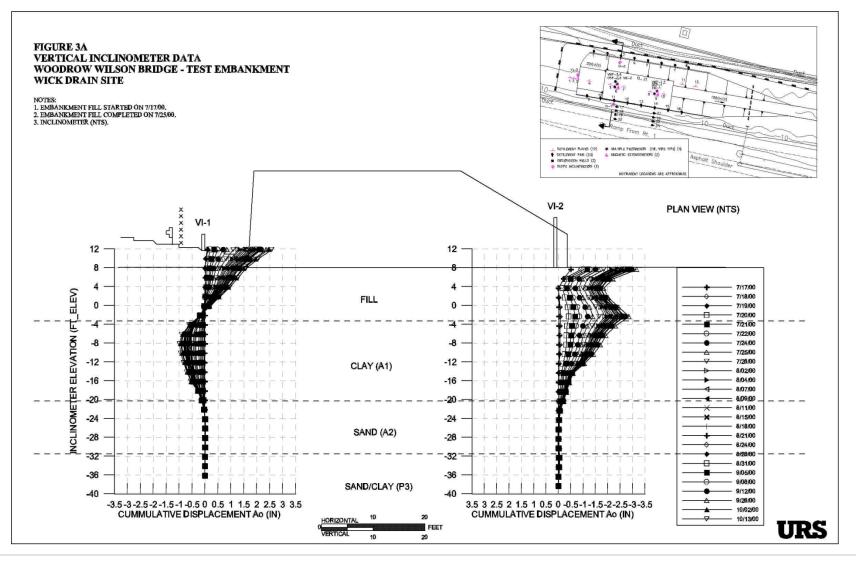
VDOT

Pre-Fabricated Vertical Drains (PVDs)

- Inexpensive (\$0.50/lf)
- Typically 10,000-15,000 lf/day
- Predrilling through fills
- 2' sand drainage blanket
- Subgrade separator geosynthetic
- Limited rate of fill placement
- Staged construction
- Settlement period
- Surcharge
- Monitoring/instrumentation

PVD Test Embankment

- 5' spacing instead of 4'
- 6-month consolidation stages
- Confirmed longitudinal "joint"



- Estimated savings of \$650,000
- Contractual "Lessons Learned" (pre-drilling; pay quantities; production rates; constructability)

PVD Test Embankment

VDOT

Virginia Interchanges

PVDs – Lessons Learned

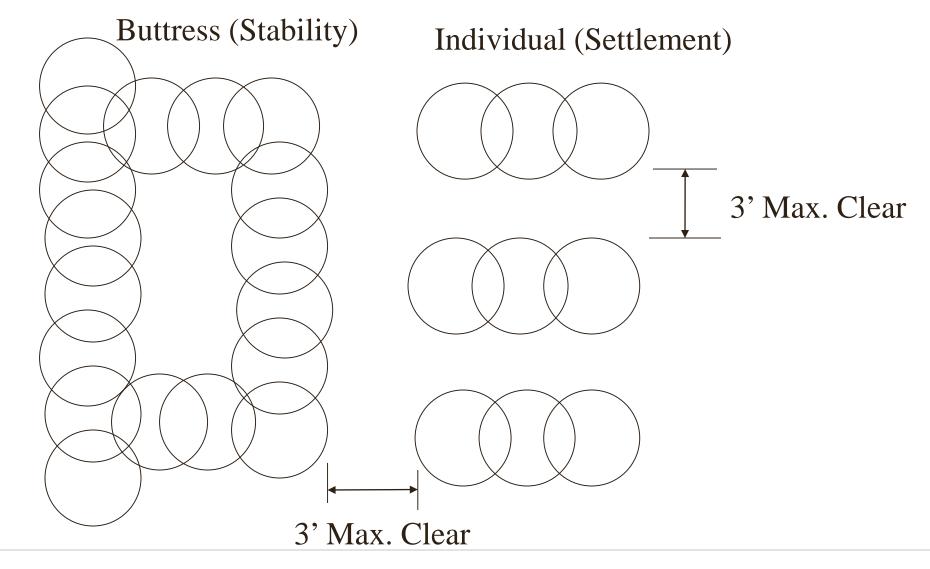
- Downdrag on exist. structures
- Lateral squeeze
- Stability of surcharge slopes
- Monitoring/instrumentation
- 2'-3' settlements
- Max loading 2'/week
- Long. joint in ex. pavement

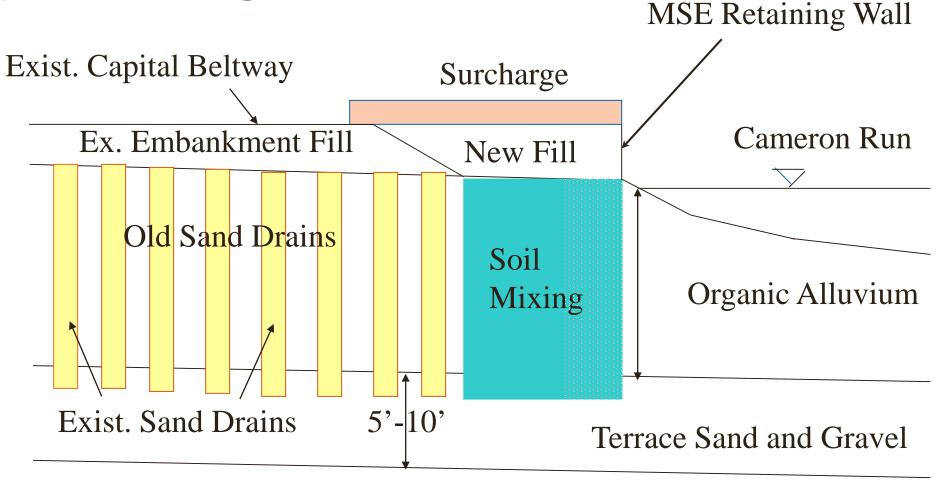
Route 1 Interchange

Deep Soil Mixing - "Wet" Mix Method

- Heavy/large equipment; batch plant
- Multiple/single augers
- Constant rotation (40 rpm)
- Slower (2.5'/min. insertion; 5'/min. withdrawal)
- Injection on insertion or withdrawal
- Dosage 250 to 750 lbs/cy
- UC strength 120 to 250 psi
- Settlements typically 1"-2"
- Spoils?
- Surcharge?

Test Embankment


- "Wet" and "Dry" mix columns
- "Wet" mix panels
- 2' construction platform
- Batch plant requirements



 Contractual "Lessons Learned" (acceptance criteria; mix design criteria; production rates; constructability; control of spoils)

Potomac Clay

Route 1 Interchange

Deep Soil Mixing - Construction

- Trial installations
- 2 rigs; 4 shifts
- Inspectors full-time on each rig
- Coring/curing/transportation of test samples by Contractor; testing by Owner
- On-site laboratory
- Daily review of test results

Route 1 Interchange

Deep Soil Mixing – Lessons Learned

- Support of equipment
- Variability of organics
- Variability of top of Terrace
- Lag between mixing and results
- Obstructions
- Tracking across fresh columns
- Equipment damage
- Pressures on piles

Acceptance of Soil Cement Elements

- Continuous records of dosage/penetration rates
- Coring of elements (diameter, location, speed, plumb)
- Field inspection/pocket penetrometer
- Unconfined compression testing
- Strength average >160 psi; min. 100 psi
- Penetration into Terrace sand/gravel
- Engineering judgement

Zeno=+6.3

BOL = -35.

Installation Records

PAGE 1

Deep Soil Mixing

Mixing Records (Tabular)

- Depth
- Time
- Speed (up/down)
- Rotation (revs/min)
- Rotation (revs/ft)
- Injection (#1, #2, #3)
- Energy Index

5 1

Element # : 84-180 84-180-C2 Rig #: 4 12"N

11 / 7 / 2002

Mixing System Design Data	Depth (ft)	Slurry Inject:	Speed (ft/min)		
		Down	Up	Down	Up
1st Layer	2.0	0.0	0.0		
2nd Layer	60.0	17.4	0.0	3.0	5.0
3rd Layer					
4th Layer					

Depth	Time	Speed	Rotation	Slurry Injection Volume (gal)			Energy	
(ft)	(mm:ss)	(ft/min)	(rpm)	Column1	Column2	Column3	Index	
0.0	0:00							
2.0	1:29	1.3	19					*
3.0	0:44	1.3	19	20.7	21.0	21.1	71	
6.0	2:16	1.3	22	50.7	50.7	50.7	65	
9.0	1:03	2.8	39	48.2	47.9	48.1	11	
12.0	1:02	2.9	38	54.3	54.2	54.5	14	
15.0	1:03	2.8	38	52.8	52.8	52.8	15	
18.0	1:02	2.9	38	51.0	51.0	51.0	13	
21.0	1:02	2.9	38	53.0	53.0	52.9	12	
24.0	1:02	2.9	38	52.5	52.4	52.4	14	
27.0	1:06	2.7	38	52.8	52.8	52.8	20	
30.0	1:41	1.7	38	67.9	67.0	65.6	22	
33.0	1:03	2.8	38	52.1	52.1	52.2	23	
36.0	1:05	2.7	38	52.6	52.6	52.5	30	
39.0	1:02	2.9	38	52.1	52.1	52.2	37	
41.7	1:33	1.7	30	62.2	61.8	62.1	74	
39.0	1:06	2.4	32	3.1	3.0	3.0		
36.0	0:38	4.7	37	0.0	0.0	0.0		
33.0	0:55	3.2	26	0.0	0.0	0.0		
30.0	1:08	2.6	19	0.0	0.0	0.0		
27.0	0:56	3.2	32	0.0	0.0	0.0		
24.0	0:39	4.6	38	0.0	0.0	0.0		
21.0	0:38	4.7	38	0.0	0.0	0.0		
18.0	0:36	5.0	38	0.0	0.0	0.0		
15.0	0:36	5.0	38	0.0	0.0	0.0		
12.0	0:37	4.8	38	0.0	0.0	0.0		
9.0	0:37	4.8	38	0.0	0.0	0.0		
6.0	0:37	4.8	39	0.0	0.0	0.0		
3.0	0:37	4.8	39	0.0	0.0	0.0		
2.0	0:12	5.0	39	0.0	0.0	0.0		
0.0	0:27	4.4	39					*
Total	28:32			726.0	724.4	723.9		
Used				748.3	748.7	746.8		

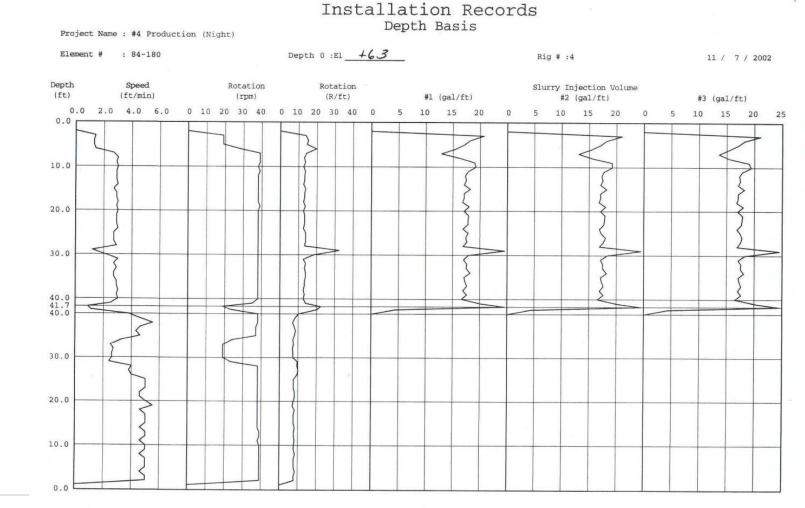
* Non-Injection Depth

Bottom Mixing Depth

*** Refusal Criteria Start Depth

Virginia Department of Transportation

INSTRUCTED BY VDOT/PCC INSPECTOR


ELEMENT TERMINATION DEPTH

Mixing Records (Graph)

• Depth

ЪО

- Speed (up/down)
- Rotation (revs/min)
- Rotation (revs/ft)
- Injection (#1, #2, #3)

Contractor's Responsibility

• Coring of elements

VDOT's Responsibility

Selection and testing

Virginia Department of Transportation

Properties

- Cement, fly ash, water and foaming agent
- 20-30 pcf
- 40 psi comp. strength at 28 days

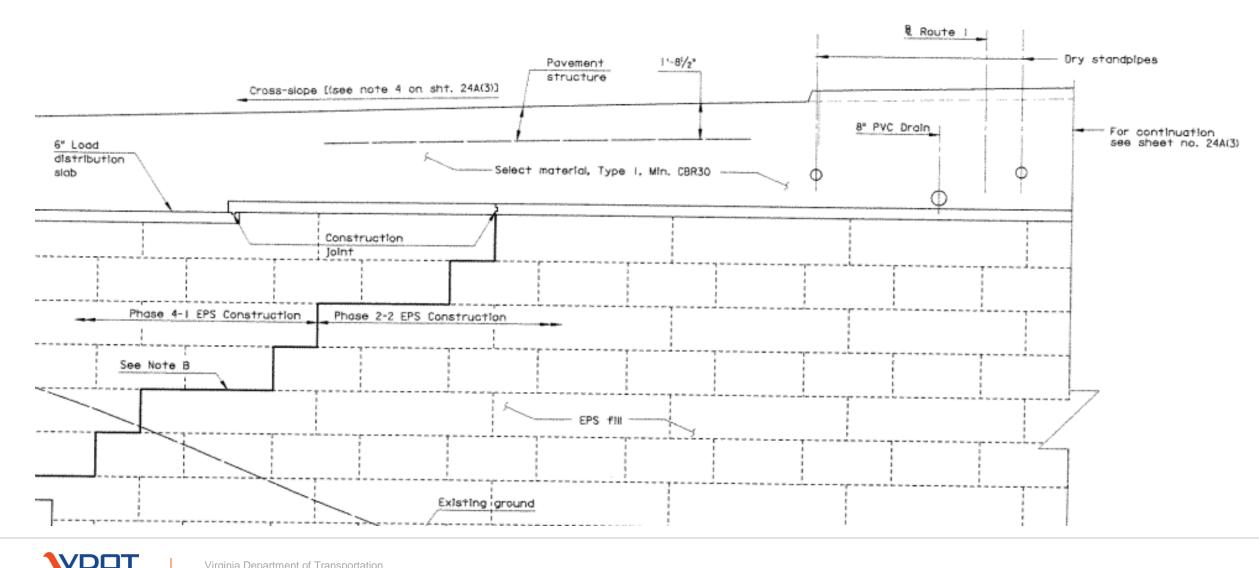
- **Lessons Learned**
- Flexibility

- Flexibility
- Ground water

- Flexibility
- Ground water
- Temp. Drainage

- Flexibility
- Ground water
- Temp. Drainage
- Effect of Vibrations

- Flexibility
- Ground water
- Temp. Drainage
- Effect of Vibrations
- Equipment damage



Properties

- 1.5 pcf to 3 pcf
- Comp. str. >15 psi
- Flex. Str. >40 psi
- Modulus >1,015 psi
- Expensive !



Virginia Department of Transportation

Leveling Pad

- Geotextile
- Stone dust

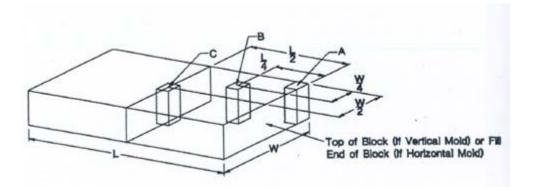
Acceptance

- Dimensions
- Perpendicularity
- Planarity

Acceptance

- Dimensions
- Perpendicularity
- Planarity
- Visual (each truck)

Sampling


- Large blocks
- 4' x 4' x 16'
- >500 lbs/block !

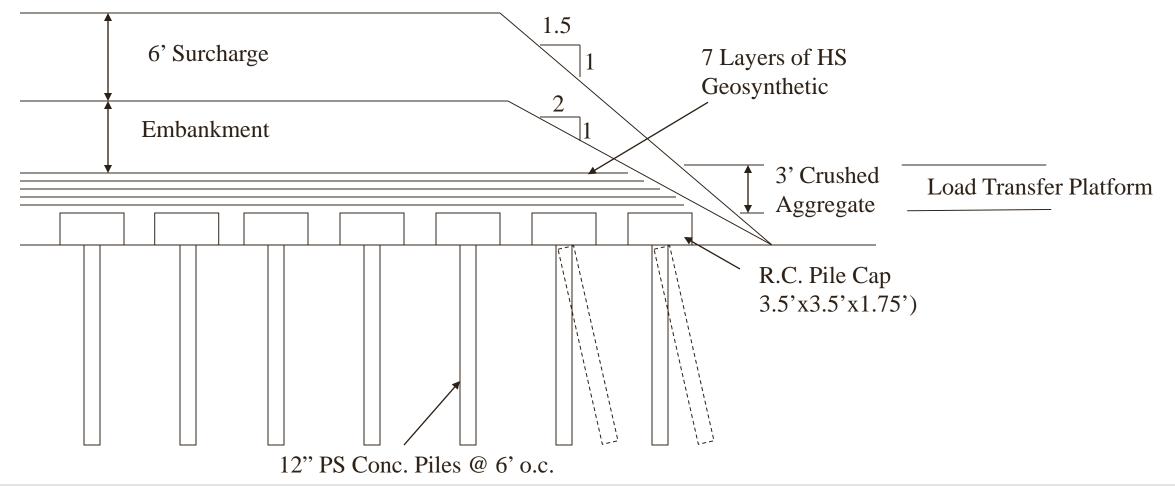
Field Sampling

- Three Locations
- Comp. str. (5) 2"x2"x2"
- Flexural str. 1"x4"x12"

Final Placement

- Experienced subcontractor
- Hot wire cutting
- Accuracy

June 25, 2006


- 10" rain in 24 hrs.
- 4.8" in 1 hr.
- >100 yr. storm

Pile Supported Embankment

Pile Supported Embankment

Layout

• Must be accurate

Pile Supported Embankment

- Test piles (PDA)
- 37-ton design capacity
- Spec. tip elev. and min. capacity
- Refusal criteria
- F-T inspection
- Noise/vibration
- Heave
- Surcharge

Geotechnical Instrumentation

Types of Instruments

- Inclinometers
- Settlement Plates
- Magnetic extensometers
- Vibrating wire piezometers
- Benchmarks; settlement plates
- Pressure cells
- Strain gauges

Geotechnical Instrumentation

- Clustered for constructability
- Time for installation in contract specs.
- Locations/types on plans
- Installation/monitoring by Owner
- Penalties (time/money) for damage
- Redundancy

Specialty Ground Improvement

Limited Number of Contractors

- Bid prices can vary significantly
- Availability
- Capacity

Materials Supply (cement, fly ash, sand, etc.)

• Availability and price

Time from design to bid/construction

- Markets changing quickly
- Cost increases
- Contractor availability

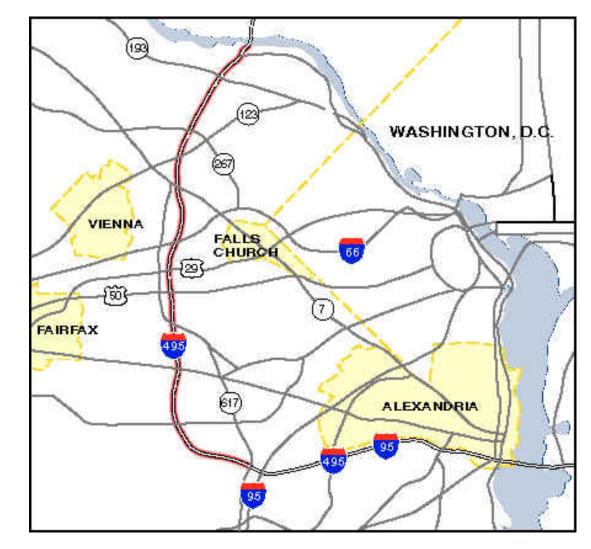
Construction Risks

- Obstructions (delays)
- Will it work ?

Summary of Lessons Learned

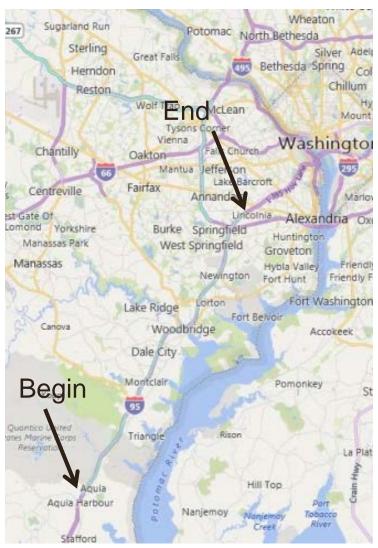
Expertise and Experience

- Geotechnical Engineer
- Inspectors
- Contractor
- Communication/training
- On-site laboratory


New Technologies

- Test programs are very valuable
- Trial installations
- Experience from previous projects

I-495 Express Lanes


- \$1.3 billion
- P3/Design-Build
- 2007 to 2012
- 14 miles
- 12 interchanges
- 57 bridges

I-95/I-395 Express Lanes

- \$925 million
- P3/Design-Build
- 2011 to 2014
- 29 miles total length
- 9 miles new construction
- Adding 1 reversible lane
- Interchange Improvements

I-395 Express Lanes

- \$500 million
- P3/Design-Build
- 2017 to 2020
- 15 miles
- Adding 1 reversible lane
- Interchange Improvements
- I-395 Fourth Lane SB (Duke St to Edsall Rd)

I-66 Outside the Beltway

- \$2.5 billion
- P3/Design-Build
- 2017 to 2022
- 195,000 vehicles per day
- 22.5 miles
- 2 express lanes/direction
- 4,000 park & ride spaces

Design-Build Program

Geotechnical Investigations

- Who will maintain the final roadway?
- How do we characterize the site?
- How much investigation (prelim. vs. final)?
- Acceptable methods of investigation?
- How much testing?

Design-Build Program

Geotechnical Design

- Minimum pavement sections
- Design parameters?
- Design methods?
- Temporary works....

Design-Build Program

Where Are We Headed ?

- Minimize risk for all parties
- D-B-B vs. D-B vs. P3
- Risks with "bad" sites
- Construction inspection

Questions?

Virginia Department of Transportation