Challenges in the Design of Screw-Piles and Helical Anchors in Soils

Alan J. Lutenegger, P.E., PhD, F. ASCE Professor
Department of Civil \& Environmental Engineering University of Massachusetts

GeoVirginia
April 28, 2015

Outline

What are Screw-Piles and Helical Anchors?

Challenge 1. Characterization of Soil Parameters

Challenge 2. Understanding Effects of Installation Disturbance

Challenge 3. Understanding Role of Shaft \& Helix

A Comment on Torque-to-Capacity Ratios

International Building Code

Section 1802.1 defines a Helical Pile as:
"Manufactured steel deep foundation element consisting of a central shaft and one or more helical bearing plates. A helical pile is installed by rotating it into the ground. Each helical bearing plate is formed into a screw thread with a uniform defined pitch."

This Technology is Not New

It is Over 170 Years Old

$1^{\text {st }}$ Recorded use of Screw-Piles was by Alexander Mitchell (1780-1868) in 1836 for Ship Moorings and was then applied by Mitchell as Foundations for Maplin Sands Lighthouse in England in 1838

Mitchell's ScrewPile Specifications for Maplin Sands

Material - Cast Iron

Shaft Diameter - 5 in.
Screw (Helix) Diameter - 4 ft .
Depth Below "Mudline" - 12 ft .
Orientation - Vertical

"On Submarine Foundations; particularly Screw-Pile and Moorings", by Alexander Mitchell, Civil Engineer and Architects Journal, Vol. 12, 1848.

" Whether this broad spiral flange, or "Ground Screw," as it may be termed, be applied ... to support a superincumbent weight, or be employed ... to resist an upward strain, its holding power entirely depends upon the area of its disc, the nature of the ground into which it is inserted, and the depth to which it is forced beneath the surface."

Pier Construction

Pleasure Piers in England

Underpinning - Great Yarmouth Town Hall 1880

Bridge Foundations

How are Screw-Piles and Helical Anchors Currently Being Used in Civil Construction?

Electric Utilities
Underpinning/Retrofitting Existing Foundations

New Foundations and Anchor Systems

Factory Manufactured
 Foundation/ Anchor System

The Industry is Largely
Driven by Manufacturers and Contractors

The Complexity of Design

Single-Helix or Multi-Helix?
"Tapered" or Uniform Helices?
Close or Large Helix Spacing?
Square-Shaft or Round-Shaft?
Compression or Tension?
Sand or Clay?
Steel Shaft or Grouted Shaft?
Aging

What are the Challenges in Design?

Challenge 1. Characterization of Soil Parameters

Challenge 2. Understanding Effects of Installation Disturbance

Challenge 3. Understanding Role of Shaft \& Helix

Challenge 1. Characterization of Soil Parameters

Not Unique to Screw-Piles and Helical Anchors but Needed for all Geotechnical Projects

We Need to Evaluate Models Used for Design and Determine Input Parameters

Traditional Design Models

Evaluation of Ultimate Capacity (Traditional Soil Mechanics Approach)

Single-Helix

$$
\begin{gathered}
\text { Clay - Undrained TSA } \\
\mathrm{Q}_{\mathrm{H}}=\mathrm{s}_{\mathrm{u}} \mathrm{~N}_{\mathrm{c}} \mathrm{~A}_{\mathrm{H}}
\end{gathered}
$$

Sand - Drained ESA

$$
Q_{H}=N_{q} \sigma_{\mathrm{v}}^{\prime} A_{\mathrm{H}}
$$

Multi-Helix

$$
\mathrm{Q}_{\mathrm{T}}=\sum \mathrm{Q}_{\mathrm{HI}}
$$

In Uniform Soils with Same Size Helices
 $$
\mathrm{Q}_{\mathrm{T}}=\mathrm{N} \times \mathrm{Q}_{\mathrm{HI}}
$$

Now Include Shaft Resistance for Round Shafts

$$
\begin{gathered}
\mathrm{Q}_{\mathrm{T}}=\sum \mathrm{Q}_{\mathrm{HI}+} \mathrm{Q}_{\mathrm{S}} \\
\mathrm{Q}_{\mathrm{S}}=\mathrm{f}_{\mathrm{s}} \mathrm{~A}_{\mathrm{S}} \\
\mathrm{f}_{\mathrm{s}}=\mathrm{s}_{\mathrm{u}} \alpha \\
\mathrm{f}_{\mathrm{s}}=\beta \sigma_{\mathrm{v}}^{\prime}
\end{gathered}
$$

Other than Compositional

Characteristics, Most Soil Parameters are Not Unique

Clay - Undrained Shear Strength: but which s_{u} ??

Sand $-\mathrm{N}_{\mathrm{q}}$ from φ^{\prime} : but which φ^{\prime} and which N_{q} ?

Undrained Shear Strength of Clay from Different Tests (from Mayne)

N_{q} Chart from Popular Book

Fig. 19.49 Bearing capacity factors vs. angle of internal friction, according to various authors.

Challenge 2. Understanding Effects of Installation Disturbance (Related to Challenge 1)

Somewhat Unique to Screw-Piles and Helical Anchors but Important for Many Deep Foundations

We Need to Evaluate How Contractor Installation May Affect Soil Parameters

Where Might We Expect

 Installation Disturbance and a Reduction in Helix Efficiency?"Structured" Soils
"Cemented" Soils
"Sensitive" Soils
Dense Sands
All Soils?

Tension Loading of Single-Helix in Clay

Compression Loading of Single-Helix in Clay

Tension and Compression Loading of Multi-Helix in Clay

High Quality vs. Poor Quality Installation in Clay

High Quality
Installation

Square-Shaft Single- \& Multi-Helix - Clay

Round-Shaft Single- \& Multi-Helix - Clay

Soft Clay

Stiff Clay

Vane Shear Tests
 Over Round-Shaft and Square-Shaft Single-Helix Anchors in Clay

Vane Shear Tests
 Over Square-Shaft Single- Doubleand Triple-Helix Anchors in Clay

"Installation Disturbance Factor"

IDF $=($ Rotations per Advance $) /$ (Ideal Advance/Pitch)

For Ideal or "Perfect" Installation of Screws with a 3 in. Pitch

$$
\mathrm{IDF}=4 / 4=1
$$

Measured Disturbance Factor - Clay

Influence on Load Test Results

Load (lbs.)

For Clays We Might Want to Relate Available Strength to IDF

Skempton (1950)

Referring to triple-helix screw-piles in compression;
"...For Mr. Morgan's double and triple screw-cylinders, it was necessary to recognize that the clay beneath the upper screws had been remoulded by the passage of the first screw. However, the whole of the volume of the clay contributing to the bearing capacity of the upper screws would not be fully remoulded and, as a rough approximation, it could be assumed that the average shear strength of the volume of clay was equal to:

$$
c_{p 2}=c-1 / 2\left(c-c_{r}\right)
$$

Torque Profiles in Sand (Clemence et al. 1994)

Single, Double and Triple Helix Anchors in Sand (Clemence et al. 1994)

Installation of Screw-Piles and Helical Anchors Causes Disturbance to the Soil

The Degree of Disturbance will Depend on a Number of Factors, Including: Soil Initial State, Sensitivity \& Installation Quality

Using IDF Requires Monitoring Installation

Challenge 3. Understanding Role of Shaft for Large Round Shaft Screw-Piles and Helical Anchors

Somewhat Unique to Screw-Piles and Helical Anchors but Important for Many Deep Foundations

We Need to Evaluate How Design Load is Carried

What is the Role of the Shaft?

Transfer Load To Helix?

Provide a Component of Load Capacity?

Load Distribution in Deep
 Foundations

(\% End vs. \% Side)

Depends on:
Pile Type \& Use
Installation Method
Geometry (L/D) Soil Type
Stratigraphy
Load Level (Relative to Ultimate)
End and Side Don't Develop Capacity at the Same Rate

Reese et al. 1976

At $Q_{\text {ult }}$
36.8\% End Bearing;
63.2\% Side

Resistance
At $Q_{u l t} / 2$
5.7\% End Bearing; 94.3\% Side Resistance

Observed Distribution @ $\mathrm{Q}_{\text {ult }}$

Parametric Analysis of Contribution of

 Shaft in Clays - Round Shaft Single Helix in Tension$$
\begin{gathered}
Q_{T}=Q_{H}+Q_{S} \\
Q_{H}=s_{u} 9 A_{H} \quad Q_{S}=f_{s} A_{S} \\
f_{s}=s_{u} \alpha
\end{gathered}
$$

"soft" clay $\mathrm{s}_{\mathrm{u}}=500$ psf $\alpha=1 \quad \mathrm{~S}_{\mathrm{t}}=2$ "stiff" clay $\mathrm{s}_{\mathrm{u}}=2000$ psf $\alpha=0.5$

Soft Clay - 2.875 in. Diameter Shaft

Stiff Clay - 12 in. Dia. helix

Soft Cay - 12 in. Diameter Helix Disturbed

Soft Clay - 12 in. Diameter Helix 10 ft . Shaft

Single-Helix Pipe Piles in Uplift

Load Tests to Failure on Helical Pile and Adjacent Plain Driven Pipe Pile

Stiff Clay - 2.875 in. Pipe

$$
\begin{gathered}
Q_{20}=16,400 \mathrm{lbs} ; \quad \mathrm{Q}_{10}=13,200 \mathrm{lbs} . \\
\mathrm{Q}_{10} / \mathrm{Q}_{20}=0.80 \quad \Delta @ \mathrm{Q}_{10} / 2=0.18 \mathrm{in} . \\
@ \mathrm{Q}_{10} \quad \mathrm{Q}_{\text {shaft }}=2600 \mathrm{lbs} \text {.; } Q_{\text {helix }}=10,600 \mathrm{lbs} .
\end{gathered}
$$

Stiff Clay - 4.5 in. Pipe

Distribution of $Q_{\text {shaft }}$ \& $Q_{\text {helix }}$ at Q_{10} (Q in lbs.)

Pipe Dia.
Q_{T}
Q_{S}
Q_{H}
$\begin{array}{lrrr}2.875 & 13,200 & 2600(20 \%) & 10,600(80 \%) \\ 4.5 & 15,250 & 8450(55 \%) & 6800(45 \%) \\ 6.625 & 20,000 & 10,600(53 \%) & 9400(47 \%)\end{array}$

Distribution of $Q_{\text {shaft }} \& Q_{\text {helix }}$ at $Q_{10} / 2$ (Q in lbs.)

Silty Sand

Aging?

Summary

1. The Behavior of Screw-Piles and Helical Anchors is More Complex than has Previously Been Considered
2. Evaluation of Soil Parameters for Design Must Consider Installation Disturbance
3. Design Methodologies will Need to Change to Reflect These Considerations
4. Installation Monitoring of both Torque and Advance is Essential
5. As Industry moves to Large Diameter Pipe Shafts, the Role of the Helix Changes

Torque-to-Capacity Correlations? The Logic

$$
\mathrm{Q}_{\mathrm{ult}}=\mathrm{f} \text { (Soil Properties \& Pile/ Anchor Geometry) }
$$

T = f (Soil Properties \& Pile/ Anchor Geometry)

$$
\mathrm{Q}_{\mathrm{ult}}=\mathrm{TK} \mathrm{~K}_{\mathrm{t}}
$$

But... K_{t} Depends on a Number of Factors Because Torque Depends on a Number of Factors

Pile/Anchor Factors

1. Helix Diameter
2. Number of Helices
3. Helix Pitch
4. Surface Roughness
5. Helix Thickness
6. Shaft Shape (S/R)
7. Connection Style

Soil Factors

8. Soil Type
9. Soil Strength
10. Soil Stiffness
11. Soil Sensitivity
12. Water Table (sat. vs. unsat.)

Contractor (Installation) Factors

13. Rotation Rate
14. Advance Rate
15. Down Force (Crowd)
16. Inclination

Measuring Torque - Direct Methods

Monitoring Installation is Critical to Performance

Installation Torque

Installation Advance (rev/ft.)

International Society for Helical
Foundations (ISHF)
www.helicalfoundations.org

