

Williamsburg VA September 30 - October 2

Lessons Learned in Geotechnical Engineering

Case Studies Linking Foundation Performance and In-Situ Tests in the Appalachian Piedmont

G-I

Paul W. Mayne, PhD, P.E.

Georgia Institute of Technology

01 October 2013

Surficial Extent of Appalachian Piedmont

Appalachian Piedmont Geologic Province

VA-MD-DC

GA-AL-SC-NC

Red Top Mountain

Stone Mountain

North Lake Lanier

"Georgia Red Clay"

Primary Rock Types by Geologic Origin

	Sedimentary Types		Metaphorphic		Igneous Types	
Grain Aspects	Clastic	Carbonate	Foliated	Massive	Intrusive	Extrusive
Coarse	Conglomerate Breccia	Limestone Conglomerate	Gneiss IEDM	Marble	Pegmatite Granite	Volcanic Breccia
Medium	Sandstone Siltsone	Limestone Chalk	Schist Phyllite	Quartzite	Diorite Diabase	Tuff
Fine- Grained	Shale Mudstone	Calcareous Mudstone	Slate	Amphi- bolite	Rhyotite	Basalt Obsidian

Major Rock Formations in USA

Piedmont Subsurface Profile

GT Load Test Site, West Campus

In-Situ Testing in the Piedmont

- SPT = standard penetration testing
- PMT = pressuremeter testing
- DP = dynamic penetrometers
- percussive soundings (air-track)
- VST = vane shear testing
- DMT = flat plate dilatometer
- CPT = cone penetration testing
- CPTu = piezocone testing
- V_s = shear wave velocity
- SCPTu = seismic piezocone
- SDMT = seismic dilatometer

Miller & Sowers (1967). Shear characteristics of Piedmont soils using rotating vanes

SCPTU in Piedmont residual silts Winston-Salem, NC

Fairfax Hospital, Northern Virginia (1984) Case Study: Drilled shaft (L = 65' and d = 3') in Piedmont residuum

Axial Pile Influence Factors (Rigid Pile)

Fairfax Hospital, Northern Virginia

 $E' \approx E_D$ (ave. 64 DMTs) = 35 MPa = 364 tsf L = 65 feet and d = 3 feet Ratio L/d = 21.7 gives $I_p = 0.076$

Buildings on Piedmont - Northern Virginia and Washington DC

DMT-SPT Correlation in Piedmont Residuum

(Mayne & Frost, TRR 1988) Also EPRI Manual (1990)

Foundation Systems in the Piedmont

- Spread footings
- Mat foundations
- Augercast pilings
- Drilled shafts
- Micropiles
- Driven pipe piles
- H-pilings
- Monotubes
- Step-taper piles
- Franki piles (PIFs)

First American Bank Mat

Bank Tower: Total Q = 73,400^k Bearing Elev = +495 feet msl Mat Thickness, t = 4.5 ft Applied Stress: q = 3.47 ksf

22-story Bank Building - Mat Foundation Tysons Corner, Virginia

Wachovia/Wells Fargo Tysons Corner, VA

Time (days)

Settlements: GSU Dormitory, Atlanta

www.geoengineer.org

10" mat settlements

DMT $E_D = 85 \text{ tsf}$

Center Deflection :
$$\rho_c = \frac{q \cdot d \cdot I_H (1 - v^2)}{E_s}$$

ADSC-ASCE-FHWA Load Test Program Georgia Tech, Atlanta

Load Tests

- End-bearing drilled shaft: d = 0.76 m L = 19.2 m
- Friction-type drilled shaft: d = 0.76 m L = 16.9 m
- Deep plate load test: d = 0.61 m z = 16.9 m

GT End-Bearing Shaft C1: d = 2.5' by L = 70' Axial Load Transfer Distribution

Elastic Continuum Response - GT Shaft C1

Elastic Continuum Response - Shaft C2

Cone Penetration Tests (CPT) at GT West Campus

CPT

- Current Phase Tranformer
- Cross Product Team
- Cellular Paging Teleservice
- Chest Percussion Therapy
- Crisis Planning Team
- Consumer Protection Trends
- Computer Placement Test
- Current Procedural Terminolgy
- Cost Per Treatment
- Choroid Plexus Tumor
- Cardiopulmonary Physical Therapy
- Corrugated Plastic Tubing
- Cumulative Price Threshold

- Cell Prepartion Tube
- Central Payment Tool
- Certified Proctology Technologist
- Cockpit Procedures Trainer
- Cone Penetration Test

- Color Picture Tube
- Critical Pitting Temperature
- Certified Phelbotomy Technician
- Control Power Transformer
- Cost Production Team
- Channel Product Table
- Conditional Probability Table
- Command Post Terminal

Piezocone Response in the Piedmont

CPTu in Piedmont PWR- Atlanta, GA

SCPTU in Piedmont residual silts Winston-Salem, NC

Geotechnics 2013 in the Piedmont

More Measurements

is

More Better

Mas Mejor

Seismic Piezocone (SCPTu) Piedmont silts in Marietta, GA

Piezo-Dissipation in Piedmont Residuum

SCPTù at Atlanta Airport Runway 5 Five Independent Readings of Soil Behavior: q_t, f_s, u_b, t₅₀, V_s

Equivalent Elastic Modulus for Static Loading

Modulus Reduction Scheme (Fahey & Carter 1993)

Randolph Compressible Pile

$$[2] \quad I_{p} = x_{1}/x_{3}$$

$$x_{1} = 4 \cdot (1+\nu) \cdot \left[1 + \frac{1}{\pi\lambda} \cdot \frac{8}{(1-\nu)} \cdot \frac{\eta}{\xi} \cdot \frac{\tanh(\mu L)}{\mu L} \cdot \frac{L}{d} \right]$$

$$x_{2} = \frac{4}{(1-\nu)} \cdot \frac{\eta}{\xi} \cdot \frac{1}{\cosh(\mu L)}$$

$$x_{3} = \frac{4}{(1-\nu)} \cdot \frac{\eta}{\xi} + \frac{4\pi\rho_{E}}{\zeta} \cdot \frac{\tanh(\mu L)}{\mu L} \cdot \frac{L}{d}$$

The proportion of load transferred from the top to base:

 $P_{\rm b}/P_{\rm t} = x_2/x_3$ [3]

The proportion of load carried in side shear is:

[4]
$$P_{s}/P_{t} = 1 - P_{b}/P_{t}$$

The displacement at the pile toe/base is given by:

$$[5] w_b = w_t / \cosh(\mu L)$$

[1]:

National Geotechnical Experimentation Site Opelika, Alabama

Opelika NGES, Alabama - Piedmont Residuum

LAB TESTING

- Grain size
- Hydrometer
- Plasticity indices
- Unit weights
- Triaxial shear (CIUC, CIDC)
- Direct shear, UU, and UC
- Fixed wall permeameter
- Flex-wall permeability
- Resonant column tests
- One-dim consolidation

FULL-SCALE LOAD TESTS

- Drilled shaft foundations
- Axial tests on drilled shafts
- Lateral tests on drilled shafts
- Time and construction effects studies
- Driven pipe piles at varied rates
- De Waal piles
- Lateral loading testing of pile groups
- Shafts with self-compacting concrete

IN-SITU TESTING and GEOPHYSICS

- Standard penetration tests (SPT)
- Full-displacement pressuremeter (FDPMT)
- Menard pre-bored pressuremeter (PMT)
- Flat plate dilatometer tests (DMT)
- Cone penetration tests (CPT)
- Piezocone tests with dissipations (CPTù)
- Seismic dilatometer tests (SDMT)
- Dual element piezocones (CPTu1u2)
- Resistivity cones (RCPTu)
- Seismic piezocones (SCPTu)
- Dielectric cones (DCPTu)
- Borehole shear tests (IBST)
- Geophysical crosshole tests (CHT)
- Spectral analysis of surface waves (SASW)
- Torque measurements following SPT
- Penetration rate effects studies
- Frequent interval V_s profiling
- Surface resistivity surveys

Mean SCPTu Profiles Opelika NGES, Alabama

Opelika NGES in the Piedmont

Drilled Shaft Load Tests: Opelika, Alabama (Brown 2002)

Load Test at I-85 Bridge, Coweta County, GA

GDOT Drilled Shaft Load Test:

D = 0.91 m L = 20.1 m

Load Test Directed by Mike O'Neill

SCPTu at I-85 Bridge, Newnan, GA

Drilled Shaft Response, Coweta County, GA

Axial Load, Q (kN)

RHYMES WITH ORANGE by Hilary Price

HERBERT, ONCE UPON A TIME YOU WERE THE ROCK OF MY WORLD. THEN YOU BECAME THE STONE IN MY SHOE ... NOW YOU'RE THE SAND IN MY SANDWICH. GOODBYE.

Rock \rightarrow Stone \rightarrow Sand = Formation of Residuum

Class "A" Prediction of Axial Pile Response Jackson County, Georgia

Turbine Foundations, Plant Dahlberg Power Station Southern Companies

Courtesy Marty Meeks

- G_{max} from SCPTu for dynamically-loaded block foundations
- Switched to driven 273 mm diameter closed-ended steel pipe piles: 8 < L < 18 m.
- CPT q_t, f_s and u₂ used for axial capacity and V_s for initial stiffness.

Seismic Piezocone Sounding, Jackson County, GA

Axial Pile Response from SCPTu, Jackson County, GA

Driven Steel Pipe Pile No. P22 (L = 9.45 m) Axial Load, Q (kN)

Axial Pile Response from SCPTu, Jackson County, GA

Driven Steel Pipe Pile No. P33 (L = 17.8 m) Axial Load, Q (kN)

Pile Load Tests

Dead Weight

Reaction Frame

Statnamic Load Test www.statnamiceurope.com

Osterberg Cell www.fhwa.dot.gov

GT Seismic Piezocone Sounding (SCPTu) GDOT - International Blvd.

Class A Prediction - GDOT Bridge at CNN

O-cell load tests in Piedmont rocks Drilled shafts - Lawrenceville, GA (2011)

- P = applied force
- L = pile length
- r_o = pile radius
- E_p = pile modulus
- G_s = soil side shear modulus
- v = Poisson's ratio of soil

- w = pile displacement
- $I = E_p/G_{sL}$ = soil-pile stiffness ratio
- $\xi = G_{s2}/G_{sb}$ (Note: floating pile: $\xi = 1$)
- G_{sb} = soil modulus below pile base/toe
- $\zeta = \ln(r_m/r_o) =$ soil zone of influence
- $r_m = L\{0.25 + \xi [2.5 (1-v) 0.25]\} = magic radius$

O-cell tests - ADSC/ASCE Lawrenceville, GA Application of Randolph Elastic Solution

Test Shaft 1 in Rock

Test Shaft 2 in PWR

Recommendations to Geotechnical Practice

Site Characterization in the Piedmont

Direct Push Borehole Methods

Continuous Push Sampling

- Steel mandrel with inner plastic lining (d = 35 to 70 mm)
- Hydraulic and/or percussive push in 3-m strokes

Sonic Drilling

- Vibrations at resonant frequency of drill pipe
- Fast and continuous sampling of soil and rock

www.geoprobe.com

<image>

www.ams-samplers. com

boartlongyear.com

Calibration of SPT Energy - Auto Hammers

Manufacturer Type	ID No.	Mean Energy Ratio (%)		Reference
Diedrich D-120	ID 26	46		UDOT
Diedrich D-50	321870551	56		GRL
CME 850	ID 21	62.7		UDOT
BK-81 w/ AW-J rods	B2	68.6		ASCE
Mobile B-80	ID 18	70.4		UDOT
SK w/ CME hammer	B6	72.9		ASCE
Diedrich D50	UF5	76	Eact	UF
CME 55	UF2	78.4	Γαιι	FDOT
CME 850	296002	79	of 2	1 GRL
CME 45	UF1	80.7	01 2.	L UF
CME 85	UF4	81.2		UF
CME 75 w/ AW-J rods	A3	81.4		ASCE
CME 75	UF3	83.1		UF
CME 750	ID 4	86.6		UDOT
Mobile B-57	DR-35	93		GRL
CME 75 rig	ID 10	94.6		UDOT

O-cell load tests in Piedmont rocks Drilled shafts - Lawrenceville, GA (2011)

Figure 7 % RQD from Rock Cores

Methods for Rating Rock Masses

- Core Recovery (CR)
- Rock Quality Designation (RQD); Deere et al. (1966)
- Rock Mass Rating (RMR); Bieniawski (1976, 1989)
- Q-System by NGI; Barton et al. (1976, 1991)
- Geological Strength Index (GSI); Hoek (1995, 2009)

Rock Mass Rating (RMR)

- Uniaxial Compressive Strength, q_u
- Rock Quality Designation (RQD)
- Spacing of Joints
- Condition of joints and/or infilling
- Groundwater conditions

Shear Wave Velocity Profile in Piedmont VC Summer Power Station, South Carolina

V_s from suspension logging in boreholes

Intact Rock

- CR = 98 100%
- RQD = 97 100%
- V_s = 10,100 fps = 3078 m/s
 - q_u = 25 ksi = 170 MPa
 - γ_t = 180 pcf = 28 kN/m³

Geotechnics 2013 in the Piedmont

- Beyond conventional SPT and PMT, showed advent and value of DMT, CPT, + SCPTu, SDMT
- Elastic continuum solution for pile foundations
 - Static top down loading
 - Bi-directional O-cell load tests
- Fundamental soil stiffness: $G_{max} = \rho V_s^2$
- Presented case studies in Piedmont
- Use of Rock Mass Rating (RMR)
- Recommended more use of geophysics for site characterization, particularly V_s profiling

In-Situ Soil Testing, L.C.

