BEHAVIOR OF TWO LARGE MATS UNDER HIGH LOADS

Professor Jean-Louis BRIAUD

Distinguished Professor Texas A&M University and President of FedIGS

WASHINGTON MONUMENT WASHINGTON DC (1887)

SAN JACINTO MONUMENT HOUSTON (1936)

Washington Monument Case History

HISTORY

- George Washington, 1st President of USA
- Constructed in three phases:
 - 1848: 1st phase = construction begins
 - 1858: construction stops = no more money
 - 1879: 2nd phase = underpinning
 - 1880: 3rd phase = completion of the shaft
 - 1884: construction completed
- Settlement measured since 2nd phase in 1879

CONSTRUCTION

- Began in 1848 with architect Robert Mills
- Original foundation consisted of a stair stepped pyramid made of blue gneiss blocks
- Shaft made of marble blocks
- Construction was halted in 1858 with the shaft at a height of 55.5 m due to lack of funds

CONSTRUCTION

- Construction resumed in 1879, after the Civil War with Lt. Col. Casey of the US Army Corps of Engineers
- Casey considered the original foundation inadequate and decided to underpin it.
 - Increased foundation area
 - Founded on stiffer soil
- The Monument was completed in 1884

PRESSURE vs TIME

WEIGHT

10

- Weight of original foundation: 70 MN (Pressure = 118 kPa)
- Weight at end of Phase 1: 305 MN (Pressure = 513 kPa)
- Weight of new foundation: 153.8 MN
- Final weight of Washington Monument: 607.7 MN (Pressure = 465 kPa)
 - San Jacinto Monument: 313 MN
 - Tower of Pisa: 142 MN
 - Eiffel Tower: 94 MN
- Earth terrace: 86.4 kPa

51 SOIL BORINGS DEEPEST 38 m

SOIL STRATIGRAPHY

TEXAS A&M

18

- Actual Pressure under old foundation = 513 kPa
- Ultimate pressure P_u under old foundation (Clay)

 $P_{\mathcal{U}} = N_{\mathcal{C}} S_{\mathcal{U}} + \gamma D$

- S_u = 72 kPa (from N=12 bpf, Kulhawy and Mayne, 1990), D = 2.34 m (at time of maximum loading), N_c = 6.2 (square foundation)
- Then $P_u = 491 \text{ kPa}$
- Ultimate pressure P_u under old foundation (Sand) (Briaud and Gibbens, 1999):

$$P_u[kPa] = 75 \times N \left[\frac{blows}{ft} \right]$$

- Blow count (N) = 12 bpf, Then $P_u = 900 \text{ kPa}$
- FS = 0.96 1.75

- Actual pressure at end of construction = 465 kPa
- Ultimate pressure P_u under new foundation:

 $P_{u}A_{f} = P_{u}(clay)A_{f} + (p_{inside} + p_{outside})H \times k_{o}\sigma_{ov}' \tan\phi$

- A_f = area of the foundation
- p_{inside} = inside perimeter of foundation
- p_{outside} = outside perimeter of foundation
- H = thickness of sand layer
- k₀ = coefficient of earth pressure at rest in sand layer
- σ'_{ov} = vertical effective stress at middle of sand layer
- Φ = effective stress friction angle of the sand layer
- Then P_u under the new foundation = 987 kPa
- Factor of safety = 2.4.

DEPTH OF INFLUENCE

21

In this case the depth of influence is set by the presence of the shallow bedrock at about 20 m depth

STRESS INCREASE WITH DEPTH BY 3D FEM (ABAQUS)

Old foundation (After Phase 1)

Underpinned foundation (Before & after Phase 3)

CONSOLIDATION CALCULATIONS

23

- Calculated settlement for:
 - Phase 1 (From 1948 to 1958)
 - Phase 2 (Underpinning of Monument)
 - Phase 3 (Completion of Monument)
- Three methods:
 - Curve method (Method a)
 - Equation method With Cr measured on initial loading curve (Method b)
 - Equation method With Cr measured on unload/reload curve (Method c)

CONSOLIDATION CURVE

CONSOLIDATION SETTLEMENTS PREDICTED VS. MEASURED

Assumption Case	Settlement (m)		
	Sub-case		
	а	b	С
Phase 1 (calculated)	1.328	1.398	1.465
Phase 3 (calculated)	0.116	0.102	0.130
Phase 3 (measured)	0.119	0.119	0.119

ĀМ

RECONSTITUTED SETTLEMENT

26

SETTLEMENT MONITORING

- Settlement was not measured during Phase 1
- Casey placed reference points at each corner of the top of the original foundation
- The benchmark used is the Meridian Stone which is marked by a bolt in the center of a square granite post set flush with the ground
- Settlement first measured in February 1879
- During underpinning, settlement readings for each corner were taken and recorded once daily, and since that time.

BENCHMARK IS THE MERIDIAN STONE AT THE WHITE HOUSE

28

MEASURED SETTLEMENT

- Settlement after underpinning = 52 mm
- Settlement after completion = 115 mm
- Settlement after last reading (1992) = 170 mm

Measured vs. Calculated Settlement

• $C_v = 10.2 \text{ m}^2/\text{yr}$ (average), $C_v = 3.39 \text{ m}^2/\text{yr}$ (minimum)

CONCLUSIONS

- After Phase 1, the pressure was close to the ultimate pressure and the settlement was 1.4 m
- Underpinning saved the monument by reducing the net pressure on the soil and increasing the ultimate bearing capacity (FS = 2.4)
- The calculated settlement for Phase 2 and 3 matched well the measured settlement (?!)
- Creep settlement has been consistent at less than 1mm/year for 110 years.

CONCLUSIONS

- Read the consolidation curve directly for settlement calculation
- Plot the consolidation curve as a stress strain curve.
- Beware of the unload-reload loop as the slope depends on the stress release amplitude

The San Jacinto Monument Case History

Picture obtained from http://www.laanba.net/photoblog/ January05/sanjacinto.jpg

- March 2, 1836:
 - Texas declares its independence from Mexico
- March 6, 1836: The Battle of The Alamo – Mexico (Santa Anna) defeats Texas
- April 21, 1836: The Battle of San Jacinto – Texas (Sam Houston) defeats Mexico

Structural Dimensions

Construction

Reinforcement in the Foundation (Bullen, 1938)
Construction

Loading

- Gross pressure = 224 kPa
- Max pressure (dead + wind) = 273 kPa
- Excavation = -83 kPa
- Net pressure = 141 kPa
- Net pressure after mat poured = 10 kPa
- Pressure from Terraces = 34 kPa and 85 kPa

Soil Borings

Boring Date	No. of Borings	Boring Depth (m)	Company	Comments	
1936	1	6.1	Layne Texas	No. and location unknown	
1938	1	198.2	198.2 Unknown Location unknown, v		
1948	1	44.2	Unknown	Location unknown	
1953	1	61	Unknown	Likely used by Dawson for teaching purposes	
1964	8	4.5 to 6.1	Golemon & Rolfe	For repairs to the Monument	
1976	13	3 to 12	Murillo Eng.	For new construction around the reflection pool	
1980	3	2.1 to 6.1	McClelland	Study of the movements	
Unknown (>1946)	1	47.6	McClelland	Unknown date and location	

Location of Soil Borings

40

			4
0.0 m —		Dep	th Soil Type
	Very Stiff Clay		5 Vom Stiff Clay, and and array
		\sim $\frac{0-7}{7.5}$	11 Very Stiff Clay, red and gray
		$X = \frac{7.5^2}{11}$	15 Very Stiff Clay red and gray
5.0 m —	$-\frac{11}{11}$		17 Silty Sand, Very Dense
19.0	Silty Sand	17-	18 Silty Sand Very Dense
18.0 m —		18-	20 Very Stiff Clay
		20-2	23 Very Stiff Clay
	Stiff to Very	23-	26 Very Stiff Clay, ligh gray and red
	Stiff Class	26-	28 Clay with Ferrous nodules
	Sun Clay	28-	Clay, light gray and tan
		31-	38 Silty Clay, brown and gray
		38-	40 Very Stiff Clay, red and gray
		40-4	47 Very Stiff Clay, red and gray
		47-:	53 Very Stiff Clay, red and gray
~ 2.0 m		53-	62 Silty Clay with gray sand
)).0 III —	Very Stiff	62-	64 Silty Clay with clay stones
		64-	75 Stiff Silty Clay, gray
77.0 m -	Suty Clay	75-	77 Stiff Silty Clay, gray

Soil Index Properties

Jean-Louis Briaud – Texas A&M University

42

Consolidation Characteristics

Jean-Louis Briaud – Texas A&M University

44

Stress History

Cone Penetrometer Results⁴⁶

Jean-Louis Briaud – Texas A&M University

Pressuremeter

P_L =2.7 MPa, P_y =1.6 Mpa, E_0 =54 MPa E_r =145 MPa, n=0.022

Pressuremeter

Undrained Shear Strength

Jean-Louis Briaud – Texas A&M University

49

Ultimate Bearing Capacity

 $P_L = 680 \text{ kPa at 5 m depth}$

 $S_u = 100$ kPa at shallow depth

Total pressure at 5 m = 224 kPa Net pressure at 5 m = 141 kPa

ULTIMATE BEARING CAPACITY

Test Method	Bearing Capacity (kPa)	F.S (Dead Load)	F.S (Hurricane + Dead Load)
S _U from Borings (Skempton, 1951)	721	3.22	2.64
CPT (Tand et al, 1986)	900	4.02	3.3
CPT (AFNOR-Frank 2013)	870	3.89	3.19
PMT (AFNOR-Frank 2013)	935	4.18	3.43

Modulus of Elasticity

Modulus of Elasticity

• Using the elastic settlement equation, $s = 0.88(1-v^2)pB/E$

the Modulus (E) at the site was backcalculated to be 12.3 MPa based on the last known settlement observation (s) of 0.329 m.

- -v = 0.35
- -p = 138.9 kPa (net pressure)
- -B = 37.8 m

Pressuremeter

Elastic Settlement

 $E_0 = 30 \text{ Mpa}, B = 38 \text{ m}, p = 141 \text{ kPa}, \gamma = 0.35$ $S(t_0) = 0.88(1 - 0.35^2)x141x38/30000 = 138 \text{ mm}$

 $\frac{\text{Long Term Settlement}}{s(t)/s(t_o) = (t/t_o)^n}$ s(t_o) = 138 mm, t = 70 yrs, t_o = 5 min, n = 0.045 S(70 years) = 138 (70 x 365 x 24 x 60 / 5) ^{0.045} S(70 years) = <u>325 mm</u>

Modulus of Subgrade Reaction

- k = p/s
- Using the elastic settlement equation, $s = 0.88(1-v^2)pB/E$
- Therefore k = I E/B
- k depends on the soil parameter and the size of the foundation
- If $k = 20000 \text{ kN/m}^3$ for a 1 m footing
- Then $k = 2000 \text{ kN/m}^3$ for a 10 m footing

56

Modulus of Subgrade Reaction

• s = p/k s = IpB/E

- A 1x1 m footing loaded with 100 kN settles 10 mm. Pressure is 100 kN/m²
- A 10x10 m footing loaded with 10000 kN settles 10 mm according to subgrade modulus. Pressure is 100 kN/m²
- A 10x10 m footing loaded with 10000 kN settles 100 mm according to elasticity.

Stress Distributions

Jean-Louis Briaud – Texas A&M University

Depth of Influence

- Two definitions for the depth of influence:
 - Depth at which the pressure has decreased to 10% of the applied surface pressure
 - Depth at which the settlement is 10% of the settlement at the surface
- The zone of influence depends on which definition is used and on the modulus profile of the soil

Settlement – consolidation test ⁶² Case 7 Case 8

- Assumptions:
 - Water at base of foundation
 - Added Fill
 - No rebound

- Assumptions:
 - Water at base of foundation
 - Added Fill
 - Rebound of excavation

<u>C</u>	C - 1	2007 Tests	1953 Tests	
Case	Subcase	(m)	(m)	
7	А	0.353	0.392	
	CUNLOAD	0.561	0.481	
	CLOAD	0.448	0.359	
8	А	0.454	0.602	
	CUNLOAD	1.002	0.854	
	CLOAD	0.781	0.587	

SETTLEMENT

Consolidation Tests		CPT(Schmertmann)		PMT(First modulus)		Maggurad
1953	2007	Short torm	Long term	Short term	Long term	in 2006
(long term)	(long term)	SHOLLETH				
0.392 m	0.353 m	0.19 m	0.299 m	0.145 m	0.291 m	0.328 m

Reference Points

• Dawson established 50 reference points around the foundation

Benchmarks-6.7 m deep

Actual Settlement

- Dawson established the elevations of the benchmarks and reference points on November 9, 1936 – two weeks after the foundation was poured
- Net soil pressure = 10.4 kPa
- Dawson took 26 settlement readings between 1937 and 1966

Actual Settlement

Jean-Louis Briaud – Texas A&M University

67

Subsidence

- The areas that have the greatest groundwater extraction have subsided about 3 m.
- The rate of subsidence in the Houston area ranged from 31 to 76 millimeters per year.
- Assuming uniform subsidence around the San Jacinto Monument, the benchmarks and reference points would not see differential settlement.

TIME (years)

Google earth

Jean-Louis Briaud – Texas A&M University

Picture obtained from

Jean-Louis Briaud – Texas A&M University

Stress History

iversity

Jean-Louis Briaud – Texas A&M University

Jean-Louis Briaud – Texas A&M University

SETTLEMENT

	Benchmark	Monument	Differential
Scenario	Settlement	Settlement	Settlement
Monument only, no	0.010	0.000	0.000
subsidence	0.019 m	0.288 m	0.269 m
Subsidence in the			
free field, no	2.613 m	2.613 m	0 m
Monument			
Monument plus	2.617 m	2 010 m	0 302 m
subsidence	2.017 111	2.717 111	0.302 m

Jean-Louis Briaud – Texas A&M University

SETTLEMENT

Measured	СРТ	PMT	Consolidation
(mm)	(mm)	(mm)	(mm)
After accounting for	Short term - 190	Short term -145	
subsidence – 295	Long term - 299	Long term – 291	Long term - 353

- <u>Stress increase with depth</u>:
 - For rigid mats, use flexible stress increase solutions. The soil redistributes the pressure in the long term.
 - Go to a depth of 2B
 - Divide that depth in about 10 layers
 - Calculate the decrease in stress due to excavation in each layer
 - Calculate the increase in stress due to the mat in each layer
 - Calculate the increase in stress due to the structure in each layer

- <u>Consolidation Testing</u>:
 - Think about what the soil will go through in the field.
 - Upon extrusion from the Shelby tube the sample is unloaded. Consolidation tests start as reloading tests
 - Apply loading up to the initial vertical stress, $\sigma_{ov}^{'},$ for the sample
 - Unload the sample by an amount equal to the pressure removed due to excavation
 - Reload the sample in steps up to at least σ'_{ov} + $\Delta\sigma_{load}$

- <u>Settlement calculations</u>:
 - Perform calculations for the center of each layer
 - Use the void ratios from the consolidation curves $s = H \Delta e/(1+e_o)$
 - Calculate separately the rebound during excavation, the settlement of the mat, the settlement of the structure.
 - Remember that heterogeneity is scale dependent.

- <u>Settlement calculations</u>:
 - For long term settlement, $E/s_u = 123$
 - If available, use a 3-D numerical method to determine settlement. In this fashion, the stress increase and the stiffness profile are automatically taken care of.
 - Which settlement is important? After the mat is poured, after a few floors, after completion of the structure? Should the recompression settlement be included?

THANK YOU

http://ceprofs.civil.tamu.edu/briaud/