LESSONS LEARNED FROM FIELD PERFORMANCE OF RETENTION SYSTEMS

Richard J. Finno

Outline

• Stability – Self-sinking caisson

- Serviceability
 - Establishing acceptable ground movements
 - Movement predictions and damage onset Excavation for Chicago-State subway renovation
 - Sources of ground movements other than stress relief Excavation for One Museum Park West

"You can observe a lot just by watching"

Yogi Berra, Hall of fame catcher for the NY Yankees, philosopher

Subsurface conditions

Water pressure in outwash and limestone is artesian

Attempts to sink caisson when glacial till reached

- Add weight at top
- Inject bentonite through ports on outside of caisson
- Undercut tip

Jetting below tip of caisson

Progress through hard strata Average tip elevation vs time → tip elevation 535 Position 2 530 ----Position 1 525 520 515 510 505 500 495 490 485 5/13/2006 7/2/2006 8/21/2006 10/10/2006 11/29/2006 1/18/2007 3/9/2007

Date

Elevation (ft)

12:00 position

Hinge

- Weight of caisson selected based on sinking
- Fully dewatered state and at-rest pressures governed compressive stresses
- Designer's experience with sinking caissons in the area
- Treated as a "flexible" tunnel

"Our practical experience can be very misleading unless it combines with it a fairly accurate conception of the mechanics of the phenomena under consideration" - Terzaghi 1939

Relative stiffness of caisson (Peck's tunnel concept) "wished in place" In - situ stresses Stress σ distributionon lining i/2(I−K_o)σ Koo Deflected shape Original σ shape σ K₀σ κ_oσ

Rigid caisson

Flexible caisson

Comments on design

- Uniform pressures consisting of at-rest pressures representative of fully dewatered case after construction
- No consideration of construction-induced lateral stresses
- Apparently considered caisson as a deep structure – but B/D ratio ~ 0.5
- Sinking plan

Strength selection should not be "conservative" in typical sense, ie. Low value is "safe"

Variations in lateral load

- Important in large diameter caissons,
 D/B < 1 i.e., a shallow foundation
- Caused by
 - stratigraphy differences
 - Property variations in same strata
 - Tilt of caisson, 1° allowed in specifications
 - Local deformations in response to excavation
 - Localized failure as a result of undercutting toe to help advance caisson
 - Non-uniform downdrag
- Stiffness of caisson changes when cracked

Measured lateral loads post-construction

Concluding remarks

- Shafts with large D/B ratios are subjected to smaller horizontal stresses due to arching in horizontal plane
- Large diameter shafts can be subjected to variations in lateral loads at same elevation due to natural variations in ground and constructioninduced stress changes
- Depending on ground conditions, shafts may be subjected to significant bending stresses and design must account for the resulting nonuniform stresses

"Do not design on paper what must be wished into place"

-Terzaghi-

Serviceability for deep excavations

- Assess damage potential
 - A number of methods to assess damage potential exist
 - Most relate damage to cracking of architectural details or load-bearing masonry walls
 - Wide range of limits can be calculated depending on building to be protected
 - Need estimate of movement distribution from wall
- Set by regulatory agency
- Maximum movement or distortion ?

Settlements, cracking and damage

Methods to evaluate when tensile cracking develops

Reference	Method type	Limiting parameter	Applicability
Burland and Wroth (1975)	Deep beam model of building	$\Delta / (L \epsilon_{crit})$	Load bearing wall (E/G = 2.6), framed structures (E/G = 12.5), and masonry building (E/G = 0.5) with no lateral strain
Boscardin and Cording (1989)	Extended deep beam model	β, ε _h	L/H = 1 and assumption horizontal ground and building strains are equal
Son and Cording (2005)	Semi- empirical	Average strain	Masonry structures; need relative soil/structure stiffness; use average strain in distorting part of structure
Finno et al (2005)	Laminate beam model	$\Delta / (L \epsilon_{crit})$	Load bearing walls, framed structures, masonry buildings, need bending and shear stiffness of components of walls and floors
Boone (1996)	Detailed analysis of structure	crack width	general procedure that considers bending and shear stiffness of building sections, distribution of ground movements, slip between foundation and grade and building configuration

Burland and Wroth (1975)

Н

due to diagonal tensile strain

Burland and Wroth approach

- Relate tensile strains in beam to onset of cracking
- Use E/G to define characteristic of building
- E/G = 2.6 (theoretical value for u = 0.3)
- E/G = 0.5 for buildings with little tensile restraint
- E/G = 12.5 for buildings very flexible in shear
- Beam of unit thickness implication is that flexural deformation depends on E (rather than EI) and shear deformations depend on G (rather than GA_v)

Example of range of distortions to cause damage

Alternate approach based on field performance data

Angular Distortion, β (x10-3)

Son and Cording 2005

DAMAGE CLASSIFICATION AFTER BURLAND AND WROTH (1975)					
Category	Description of Damage	Crack Width			
Negligible	Hairline Crack.	< 0.1 mm			
Very	Fine cracks which can easily be treated during	1 mm			
Slight	normal decoration. Cracks in exterior brickwork visible on close inspection.				
Slight	Cracks that can be easily filled. Redecoration probably required. Several slight fractures showing inside building. Cracks are visible externally.	5 mm			
Moderate	Cracks may require cutting out and patching. Repointing of external brickwork. Doors and windows sticking. Service pipes may be fracture. Weather tightness often impaired.	5 mm to 15 mm or several cracks > 3 mm			
Severe	Extensive repair involving removal and replacement of sections of wall, especially over doors and windows. Windows and door frames distorted, floor slopes noticeably. Walls lean or bulge noticeably, some loss of bearing in beams. Utility service disrupted.	15 mm to 25 mm, depends on number of cracks			
Very	Major repair required involving partial or complete	Usually > 25 mm,			
Severe	reconstruction. Beams lose bearing; walls lean	depends on number			
	badly and require shoring. Danger of instability.	of cracks			
Limitations for quantitative evaluation of framed structures

- Preventing cracks in architectural details
- Cracking related to tensile stresses in walls
- What are strains in walls when adjacent excavation is made? - or -
- When are walls attached to frame in terms of "selfweight" settlements that develop as building constructed?

But all methods rely on knowing the distribution of excavation-induced ground movements

Example of cracking Excavation for Chicago-State Subway renovation

Plan view of excavation support

Section view of excavation support

Settlements measured in basement of school at bottom of columns

West

East

UNIVERSITY

Summary of damage at Chicago-State

- The first cracks were observed at distortions greater than 1/920
- Most damage occurred when distortion increased from 1/1000 at end of wall installation to 1/400 at the end of excavation
- No structural damage was observed during the project
- Observed damage characterized as "negligible" to "slight" (Burland et al., 1977)

General approach to design excavation support system

- Establish damage threshold or meet regulatory requirements
- Estimate deformation profile at foundation level
- Design support system to meet limit movements to acceptable limits (stiffness-based design)
- Monitor

Updating design predictions during construction can be automated – "adaptive management approach"

Adaptive management – automated observational approach

Movement predictions

- Depend on soil conditions, retention system stiffness and construction procedures
- Two step process
 - Precedent
 - Site specific (numerical method)

"Accurate predictions in geotechnical engineering are a results of compensating errors"

Dr. Elio D'Appolonia

Movement predictions based on precedent

- Empirical
 - Peck (1969) and Goldberg et al. (1975)
- Semi-empirical
 - Excavation and bracing cycles
 - Maximum movement
 - Clough and O'Rourke (1990) ~ lateral wall movement and settlement
 - Clough et al (1989) ~ lateral wall movement in clays
 - -3-D adjustments (Finno et al 2007)
 - Distribution of movements
 - -Hsieh and Ou (1999) ~ perpendicular to wall
 - Roboski and Finno (2005) ~ parallel to wall

Normalized movements: summary

Corner effects

Extents of settlement in Clough and O'Rourke charts are not distributions of settlements

Settlement distribution – (Hsieh and Ou 1998)

"small" cantilever movements

"large" cantilever movements

Movements parallel to wall

NORTHWESTERN UNIVERSITY

Estimate lateral movements in clays – semi-empirical (Clough et al. 1989)

Free field movements

NORTHWESTERN

Presence of building adjacent to excavation affects movements

Empirical methods mostly developed by 1990

- Developments since then
 - Top down construction
 - Deep mix slurry walls
 - Hybrid support systems
 - Ground improvement for movement control
 - Use of cross-walls
- How applicable are empirical methods
 without correction?

Movements from causes other than excavation and bracing cycles

- Removal of existing foundations
- Wall installation
 - Densification of sands from vibrations
 - Displacements arising during installation
 - Slurry or secant pile wall
 - Sheet-pile wall
- Deep foundation installation
- Concrete shrinkage during top-down construction

Secant pile wall installation

Drilled shaft installation

Baker and Gill (1985)

Baker and Lukas (1978)

One Museum Park West project

Illustrate the impact of construction activities on the ground movements caused by excavations

"Nominally" top down construction

- 1. Excavation removed from critical path
- 2. Overexcavation is prevented
- 3. Relatively high stiffness
- 4. Temporary support system is also permanent

One Museum Park West Excavation

← ROOSEVELT ROAD →

Stage	Activity	Description
1	Perimeter pile wall and foundation installation	Level site
		Install perimeter pile walls
		Install caissons
2	Central core construction (Bottom-up)	Install sheet pile wall
		Cycles of excavation and bracing
		Place reinforced
		concrete mat
		Construct core
3	Basement construction	Top-down construction

• 5 inclinometers

• 101 settlement points

•5 Strain gage stations: total of 72 strain gages

Perimeter wall and drilled shaft construction

Elevation

Fully cased until tangent section reached

Central core construction

Top down construction

Summary of observed settlements

Aging

Shrinkage

Concrete material timedependence at One Museum Park West project

To quantify: FE analysis of below grade structural components

Creep

Concrete effects = 30% of the max. lateral displacement

After Finno et al (2015)

Concluding remarks

- Methods to evaluate impacts of damage are semiempirical – trying to protect architectural details
- Distribution of excavation-induced ground movements is a two-step process: empirical and FE analyses
- The process of predicting, monitoring and updating (adaptive management) is a useful design tool
- At times, most economical design is one where limited damage to adjacent structure occurs and contractor repairs it
- If one does not think hard about construction in the design stage of a project, unexpected performance is likely

Acknowledgements

- Schnabel Foundation Company
- Hayward Baker
- Case Foundation
- Thatcher Engineering Corp.
- GeoEngineers, Inc.
- WJE & Associates
- STS Consultants
- Ground Engineering, Inc.
- Sebastian Bryson, Michele Calvello, Paul Sabatini, Dan Priest, Jill Roboski, Kristi Kawamura, Tanner Blackburn, Terry Holman, Wanjei Cho, Young-Hoon Jung, Greg Andrianis, Miltos Langousis, Cecilia Rechea, Taesik Kim, Fernando Sarabia, Luis Arboleda, Charlotte Insull, Zhenhao Shi – former Northwestern University graduate students

- Turner Construction
- Walsh Construction
- O'Neill Construction
- Skanska
- Aldridge Drilling
- DBM
- Board of Underground City of Chicago
- Funding provided by National Science Foundation and Infrastructure Technology Institute at Northwestern University

References

- Arboleda-Monsalve, L.G. and Finno, R.J. "Influence of Time-dependent Effects of Concrete in Long-Term Performance of Top-down Construction," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 141, No. 4, 2015, 04014120, 1-13.
- 2. Boone, S. J. (1996). "Ground-Movement-Related Building Damage," *Journal of Geotechnical Engineering*, ASCE, Vol. 122, No. 11, pp. 886-896.
- 3. Boscardin, M. D. and Cording, E. J. (1989). "Building Response to Excavation-Induced Settlement," *Journal of Geotechnical Engineering*, ASCE, Vol. 115, No. 1, pp. 1-21.
- 4. Burland, J. B., and Wroth, C. P. (1975). "Settlement of Buildings and Associated Damage," *Proceeding of a Conference on Settlement of Structures*, Cambridge, pp. 611-654.
- 5. Clough, G. W., Smith, E.M., and Sweeney, B.P. (1989). "Movement control of excavation support systems by iterative design." *Current Principles and Practices, Foundation Engineering Congress,* Vol. 2, ASCE, 869-884.
- 6. Clough, G. W. and O'Rourke, T. D. (1990). "Construction induced movements of in-situ walls." *Design and Performance of Earth Retaining Structures, Proceedings of a Specialty Conference at Cornell University*, ASCE, New York, 439-470.
- 7. Finno, R.J., "Adaptive Management of Excavation-induced Ground Movements," Keynote lecture, Proceedings, International Symposium on Urban Geotechnics, Incheon, Korea, September, 2009.
- Finno, R.J., Arboleda-Monsalve, L.G. and Sarabia, F., "Observed Performance of One Museum Park West Excavation," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 140, No. 1, 2014, 04014078, 1-11.

References (continued)

- 9. Finno, R.J., Blackburn, J.T. and Roboski, J.F., "Three-dimensional Effects for Supported Excavations in Clay," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 133, No. 1, January, 2007, 30-36.
- 10. Finno, R.J. and Calvello, M., "Supported Excavations: the Observational Method and Inverse Modeling," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 7, July, 2005, 826-836.
- Finno, R.J. and Xu, T. "Selected Topics in Numerical Simulation of Supported Excavations," <u>Numerical Modeling</u> of Construction Processes in Geotechnical Engineering for Urban Environment, keynote lecture, Th. Triantafyllidis, ed., Bochum, Germany, March, 2006, Taylor & Francis, London, 3-20.
- 12. Goldberg, D. T., Jaworski, W. E., and Gordon, M. D. (1976). "Lateral support systems and underpinning." Vol. 1 Design and Construction, April, FHWA-RD-75-128, Federal Highway Administration, Washington, D.C.
- 13. Hsieh, P. G., and Ou, C. Y. (1998). "Shape of ground surface settlement profiles caused by excavation." *Canadian Geotechnical Journal*, 35, 1004-1017.
- 14. Peck R.B. (1969). "Deep excavations and tunneling in soft ground." *Proceedings,* 7th International Conference of Soil mechanics and Foundation Engineering, State-of-the-ArtVolume, 225-290.
- 15. Roboski, J.F. and Finno, R.J., "Distributions of Ground Movements Parallel to Deep Excavations," Canadian Geotechnical Journal, Vol. 43 (1), 2006, 43-58.
- 16. Voss, F. (2003). "Evaluating Damage Potential in Buildings Affected by Excavations," MS thesis, Northwestern University Evanston II 166 p