REHABILITATION OF THE CENTRAL MACHU PICCHU HYDROELECTRIC PLANT

CONSTRUCTION OF GALLLERIES CONNEGTNG THE POWERHOUSE TO THE TAILRACE TUNNEL

OGTOBEB 1,2013

PROJECT LOCATION MAP

The flood that destroyed the works of the Central Hydroelectric Machu Picchu

SALKANTAY GLACIER IN THE SLIDING ZONE

MELTING PROCESS AND SATURATION OF MORAINES

VIEW OF THE STARTING POINT OF THE SLIDE

MUDDY GROUND AT THE BOTTOM OF THE LAGOON OF THE GLACIER AFTER THE FLOOD

VALLEY OF THE AOBAMBA RIVER AFTER THE FLOOD

Expersh of cevaruion aictrect monupicin SA
EYENDA

CENTRN HIDROEISCTRICA MOCHUPICCHU

- . . . unte oe cuences

CUENCA DEL AOBAMBA

AOBAMBA WATERSHED AFTER THE FLOOD

SLIDE ARRIVING AT THE CONFLUENCE WITH THE VILCANOTA RIVER

VISTA PANORAMICA TUBERIAS DE PRESION (15 DE ZNERO DE 1998)

FLOODING OF THE OF THE CAMP AREA

REFERENCES OF RESERVOIR ELEVATION

Recovery of the Central Machupicchu hydroelectric plant

COFFERDAM AROUND THE CONTROL BUILDING

OPENING OF A DISCHARGE CHANNEL TO FACILITATE DRAINAGE

REHABILITATION PROJECT FEATURES

- EWI projected the new discharge system of Power House 1 and 2 in anticipation of similar flooding.
- This new system discharge would be underground, crossing under the Vilcanota River valley and discharging 2.0 kno down strean through a tunnel exceaverted in the grandite of the sight obalss.

PLAN VIEW OF THE REHABILITATION OF THE CENTRAL MACHUPICCHU HYDROELECTRIC PROJECT

POWERHOUSE
\#2
DISCHARGE

DESIGN BASICS OF SOIL FREEZING

- The contract documents enabled the contractor to provide an additional alternative.
- Hydro geological and geotechnical information were too poor for a safe freezing of soil approach and ground materials were too pervious and heterogeneous.
- Finally the Consortium proposed a pressurized shield alternative.

PRESSURIZED SHIELD

- This techinique hias the following advantages.
 ento de los tubos, Ingreso de uno de los
empulado hacia la Galeria en excavación
corvity).

En este grafico se representa todo el proc lso, el tubo baja, es empuajdo conjuntamente con
la TBM, y queda isto para el sinuiogte tuho, este proceso se repite hasta alcanzar el otro conditions.

Estación de Empuie, son empujados por los JACKs, hasta, generar espacio para ingresar otro tubo

RANGE OF GRANULAR SOILS APT FOR A PRESSURIZED MIXED SHIELD

LIMITATIONS OF THE MACHU PICCHUPROUECT

- In adoficos to sollonojicoss cheproject has an inportant linitationinsecesss, herasly access to the job-stite is anamow çereje mize railway.
 menchipeny ro e transporied to the job site.
 and tutoesnas linnited by the internal diemeter of cife access tunnelsinas.

E ALTERNATIVE PROPOSAL

CAVERNA MARGEN IZQUIERDA
INFERIOR $8 \times 13.55 \times 7$
$N=8542638.028$ $\overline{E=764425.262}$ EJE DE PIqUE

- Excavation of two parallel tunnels, with Launching and Reception pre-Tunnels excavated in the granite formation on both sides.
- Use of a Herrenknech joint shield AVN 2500, 3.15 m diameter; with pipe jacking technology:
- The shield is launched from the cavern of the right bank.

MAIN WORKING DIAGRAM OF A PRESSURIZED AVN D TYPE SHIELD

Front Chamber (3) Pressurized Chamber (4), Main Wall (1), (12) air bubble. (5) opening between Chamber (3) and (4) Pressure Chamber.
The bentonite mud is pumped to the front chamber through the main (9), connected to the feed pump.
The suspension mixed with soil is sucked from the mains (6 and 7), after passing through the sieve of the crusher (13) bowl decanter where it is separated and returns by pumping to the main system to a pond.
Sediments that accumulate below the opening (5) are eliminated by alternating feeding and return flows through the pipes (8 and 7).

VIEW OF THE CUTTER HEAD

The new hydraulic design cerxsisted of replacing a single tunnel discharge, by two smaller tunnels, twin and parallel. The owner asked a flow rate of discharge of the Central . recovered $57 \mathrm{~m} 3 / \mathrm{sec}$. This meant that two new $\boldsymbol{\text { lischarges had }}$ to work under pressure.

CONTRATIST CONSORCIO CARTELONE-COSAPI	ESTUODOS DE INGENERA PARA EL SISTEMA DE DESCARGA				
SUPERVISION CONSORCIO FICHTNER-GEOCONSULT					
PACIFIC S.A.		latememe	come		
	\%ersemen	${ }_{\text {ax }}$	${ }_{\text {A1 }}$		

CAVERN OF RIGHT BANK

- The machine and the concrete pipes were manufactured in Germany, so the biggest logistical prob, was transport both from the Rheis segion tovachu Picchu: The ideawas to use inlandwaterways directly to Antwerp, then you transport manitime (Matarani) Peruvian port and rail transport to work.

NORMAL OPERATION OF THE SHIELD

LOWERING PARTS OF THE MACHINE

MOUNTING OF THE SEAL OF LAUNCH - TUNNEL NO. 1

ASSEMBLING THE CUTTING HEAD

ASSEMBLY OF THE MACHINE IN THE LAUNCHING CAVERN ON THE RIGHT BANK

ASSEMBLY OF THE MACHINE

ASSEMBLY SEAL AND BRAKE TUBES

ASSEMBLY OF THE INTERMEDIATE JACKING STATION

CONCRETE PIPES

- Concrete pipes were designed to withstand the maximum jacking loads, and internal pressures.
- Its dimensions are 3.1 m (outside diameter), and 0.30 m of wall thickness.
- Used reinforcement was coiled, F 10 mm @ 8 mm
- The quality of concrete used was B55 (Norma DIN)

0

Supplied pip= atypes were Type ((joint with TBM) Type IJ (with B-port injection)

* Type IJ (without injection ports)

Type IV (short pipe for the intermedfate station).
FWhat we V (interjack ong onp) Galleny 2 ? Typicallength of the pipe was 25 mb

STOCK OF CONCRETE PIPES

PRO TTHE
 TRANSPORTATIO

- Pipes showed many minordefects during transport by boat truek trainand intermediate hamellings.
- 49 a total of 134 pipes were unrecoyerable
2)Most of the pipes were repaired usingmortar epoxy under the supervision of experts.
- Repairs were tested with simple tension tests and inspectied with ulitesound.

DAMAGE TO THE PIPES

REPAIR WITH EPOXY MORTAR

VIEW OF THE GRANITE FACE, AT THE BEGINNING OF THE TUNNEL \#1

GEOLOGICAL CONTINGENCY

 GALLERY 1- The advance in Tunnel \#1 suddenly stopped after approx. 60 meters from the cavern on the right bank.
- The blockage was limited to 5 pipes behind the machine, between the interjack and the machine.
- Blocking lasted over 60 days, all efforts by using the normal means available on the site could not move the section of the pipe and the trapped machine.

GEOLOGICAL CONTINGENCY

 Tunnel \#1- In order to achieve the necessary geological information, the consortium made three exploratory surveys, two of them around the blocked pipes. Samples were tested in the laboratory in Lima.
- At the same time, consulting engineers went to the site to analyze the problem, and Herrenknecht made some improvement by increasing force available at the main station of thrust. Two hydraulic pistons were added.

-THE LOCATION OF THE BLOCKED SHIELD GRAPHIC SCHEME

LIBERATION OF TUNNEL 1

UNSUCCESSFUL ATTEMPTS BY PUSHING FORWARD AT INTERMEDIATE STATION

LIBERATION OF TUNNEL 1

SUCCESSFUL LIBERATION OF BLOCKED PIPES

Step 1, Push forward with TBM steering jacks Step 2. Release TBM steering jacks and concurently

LIBERATION OF TUNNEL 1

The combined efforts of improvement of the bentonite slurry (Mr. Lyon), and the assistance of Mr. Abbott's Jason Co., helped release the machine.

- The tunnel was finally completed on 17 November, having been started in late August.

THE MACHINE-GALLERY \# 1

THE FIRST COMPLETED TUNNEL

- Findings from the exploratory program include:
- The soil mass consists of fine, flowing and unstable glacial sediments.
- The material behaves as a liquified sand as the shield advanced, flowing like a dense, viscos fluid.
- The mass adheres very strongly on the porous surface of the concrete.
- The friction force of this material exceeded the total available thrust force.

THE GEOLOGIC SITUATION AFTER THE DEVELOPMENT OF EXPLORATION BORINGS

LIQUIFIED SILT FLOWING THROUGH THE INJECTION PORTS

- The following mitigating measures were adopted:
- Install three injection ports in all pipes.
-Coating of the pipes with waterproof and durable coating.
- Increase the diameter of the cutting head by 1 inch.
- Improve the force available in the station's main thrust.

MEASURES ADOPTED FOR THE SECOND TUNNEL

- The second thrust was undertaken on the basis of the experience gained in the Tunnel \#1 and on the basis of the Geotechnical analysis by specialists.
- The following factors helped in the successful drive of the second tunnel:
- Soil never stuck on the steel surface of the shield of the machine
- The improvement in Iubrication products kept the bentonite from mixing with the saturated soil.
- The use of a adequate lubricant (bentonite) that does not mix with the surrounding soil is an important factor to maintain a sustained advance.

AFTER THE INCREASE IN DIAMETER CUTTING HEAD

IMPROVEMENT OF THE MAIN STATION OF THRUST

- The second tunnel was completed in 9 days, working 2 shifts of 12 hours a day.
- The intermediate jacking stations were never used.
- Maximum thrust force registered did not exceed 1000 tons, for the 150 meters of pipe.
- Thrust forces varied slightly throughout the push.

GRAPH OF THE THRUST FORCE IN THE TUNNEL \# 2

HOLE-THROUGH OF THE TUNNEL \# 2

TUNNEL \# 2 COMPLETED

MONITORING OF THE ALIGNMENT OF THE PIPES - TUNNEL 2

GALERIA N ${ }^{\circ} 2$
medición asientos a partir del 1/02/01
con líneas de tendencia poli nómicas
\longrightarrow tubo 49 tubo $54 \longrightarrow$ tubo $53 \longrightarrow$ tubo 26

