

Geotechnical Investigations for Tunneling and Underground Construction Projects, Recommended Considerations Based on Recent Case Histories

Jamal Rostami, PhD, PE Hadden / Alacer Gold Endowed Chair Director of Earth Mechanics Institute Department of Mining Engineering

rostami@mines.edu

COLORADOSCHOOLOFMINES.

Tunneling and Underground Space

- The use of Tunneling is on the rise on a worldwide basis due to
 - Urbanization,

3

- Mass transits i.e. Subway, road tunnels
- Water and sewer
- Utility corridors
- Living space, Parking, etc.
- Water management
- Road, Rail, high speed rail
- Storage, oil/gas/water, Other
- Defense and Misc.

Will we move to denser sustainable urban use?

- 1. Denser urban use more typical of urban areas developed prior to the car
- 2. Sprawling, less dense cities, more typical of urban areas developed with cars
- 3. Does sustainability suggests this will change?

Recent Development in Urbanized life

• When density, climate, or topography induce use

People go underground when uses they desire fit best underground, when severe climate makes the underground desirable, and when earth form (hillsides) create easily exploited opportunities. Most uses have been transportation, parking, shopping

Source: Priscilla Nelson

Underground Master Plan

In the UK

Organizations are mandated (and funded) to use geographic information to improve knowledge of their assets in order to

reduce costs

7

- ensure regulatory and legislative compliance
- increase customers' satisfaction
- deliver better services
- communicate more effectively

Underground Parking

Utilidor

9

Amsterdam under the Mahlerlaan

APPLICATIONS

Underground Stadium

Stormwater management and road tunnel (Smart) Kuala lampur

Convenient, Faster & Better via SMART MOTORWAY

LOT 10

1 VX

122222222 m Em 0000

Largest in South East Asia! Second Largest in Asia!

Shield Length: 10.245 m Shield Weigth: 1,500 tonnes Total length: 70.0 m Total Weigth: 2,500 tonnes Cutterhead Diameter: 13.260 m Maximum Advance Speed: 30 mm/min Minimum Steering Radius: 200 m Total Installed Power: 8,200 kVA Cutterhead Electrical Power: 4,000 kW

APPLICATIONS

Railroad Tunnels

APPLICATIONS

Underground Oil Storage

Difference between Tunneling and other Construction Works

- In typical construction the structure is ON the ground,
 - Mostly dealing with foundations on soil or rock
- In tunneling, the structure is IN the ground for the entire length
 - Dealing with variations in geology/lithology
 - Variability is given, but alignment is mostly unknown except for locations where borings are available, often at high intervals
- Critical to educate owners/public about this issue

14

Selection of tunneling method

- Based on stability of the ground
 - Roof and walls
 - Stable ground, standing on its own or for sufficient time to install suitable support
 - Unstable ground \rightarrow shielded tunneling
 - Face

15

- Stable face, \rightarrow Open face
- Unstable face, \rightarrow Shielded
- Groundwater conditions \rightarrow Pressurized face

Face

Machine Selection

COLORADOSCHOOLOFMINES

General classification scheme for tunnelling machines (AITES / ITA, Working Group No.14).

Support				Excavation		Ì	Machine			
Location	Cavity	System Face		Method	Tool	Reaction Force	Category	Туре		
None			Tuee	Partial Face Excavating Machines (PFM)	Various	None or Grippers	S	Special Rock Tunnelling Machines - Mobile Miner - Contin uous Miner - Other		
Cavity		None		Full Face Rotat- ing Cutting Head (TBM)	Cutting disk	Grippers	achin	Unshielded TBM Special Unshielded TBM	H	
					Cutting disk/ Cutting bits/ Cutting knives & teeth	Thrust Jacks	Rock M	Single Shielded TBM (DS-TBM)	BMs	
					Cutting disk	Grippers and Thrust Jacks		Double Shielded TBM (DS-TBM)		
Face and cavity				PFM	Rod header/ Back hoe/ Manual excavation	Thrust Jacks		Open Shield		
		Mechanical		TBM	Cutting bits/ Cutting knives & teeth			Mechanical Supported Closed Shield		
	ield			PFM	Road header/Back hoe			Mechanical Supported Open Shield		
	Shi	Fluid	Compressed Air	TBM	Cutting bits/Cutting knives & teeth	Thrust Jacks	Jes	Compressed Air Closed Shield		
				PFM	Road header/ Back hoe/ Manual excavation		d Machir	Compressed Air Open Shield		
			Slurry	TBM	Cutting disk/ Cutting bits/ Cutting knives & teeth		ît Groune	Close Slurry Shield – Slurry Shield – SS-Hydroshield		
				PFM	Road header/Back hoe		Sof	Open Slurry Shield – Special Open - Slurry Shields		
			Earth Pres- sure Balance	TBM	Cutting disk/			Earth Pressure Balance Shield - EPBS Special EPBS		
	None or fluid	e None or slurry or Earth Press. Balance		TBM	Cutting knives & teeth			Combined Shield - Mix Shield - Polishield		

Shield

D

6-1

GEOVIRGINIA

Lessons Learned in Geotechnical Engineering

Closed Face

Conventional Tunneling by Drill and Blast

Constraint Constraint

A

Drilling Equipment

Ground Control, Roof Bolting Equipment

Jackleg / Jumbo Drills

Ground Support

This goes along with Rock Mass Classification systems RMR or Q

Excavation class *	2-X-F	3-X-F	4-X-F	5-X-F	6-X-F	7-X-F	7-X-F1
Rock Class	Good rock	Fair rock	Poor	Poor	Very Poor	Very Poor	
Rock mass	From st local in:	Structural weakness and/or insufficient interlock between blocks			Squeezing ground: stress exceed rock strength		
Dellaviour	Minor problem	Friable			Squeezing	Hvy. Squeezing	
Shotcrete	5 cm	10 cm	15 cm	15 cm	20 cm	25 cm	25 cm
Wire mesh (layers)	0	1	1	1	1	2	2
Steel Ribs	по	no	по	no	yes	yes	yes
Radial Rock bolts 4 -6 m in length	Cen (S/I	nent grouted	Swellex Mn 24		Self Drilling Rockbolts		
Front Consolidation	(Spiling steel pipe 4 (Pipe roofing, 15 m l	m long, 10-30 pcs) ong, 20-25 pcs)		Spiling & Pipe Roofing			
Round length (top heading)	3,0-4,0m	2,2-3,0m	1,7-2,2m	1,3-1,7m	1,0-1,3m	0,8-1,0m	0,8-1,0m

GEOVIRGINIA

Lessons Learned in Geotechnical Engineering

Shotcrete

Ground Support

• Final Lining, Cast In Place (CIP) concrete

Partial Face Machine, Roadheader

TBM Selection

Cessons Learned in Geotechnical Engineering

G-1

Machine selection as a function of rock mass

Function of Rock Mass Rating (RMR)

GEOVIRGINIA

Lessons Learned in Geotechnical Engineering

Tunneling by a Main Beam TBM

Williamsburg VA tober 10 - October 12

GEOVIRGINIA

Lessons Learned in Geotechnical Engineering

Main Beam TBM, single grippers

Double-Shield TBM

Shielded TBMs

PDS 740-OS/RM

HDS 1064/660-OS

HDS 660-OS

ADS 248-LS/BV

MDS 356

Shield & LSK 190/300

PDS 710-GS/EPB

Telescop Shield

Blade shield

Blade shield

Single Shield, Open Type

Tunneling by a Shielded TBM

Closed Face Shield, Face Support

Closed Face Shield Selection

Function of Soil Type

GEOVIRGINIA

Lessons Learned in Geotechnical Engineering

Slurry TBM

Crober 10: October 12: Lessons Learned in Geotechnical Engineering

EPB Machine

Case Histories

Sequential Excavation Method (SEM)

Challenges

- 38
- Crossing of Metro line and station, within 3 ft of the crown
- Close proximity to buildings and active traffic above
- Small footprint for shafts and portals
- Highly variable ground with cobles and boulders
- Shallow depth and changing slopes
- Existence of ancient water conduits (Qanats) and possibility of flash floods at the face
- Leaky old water lines along the tunnel

Crossing of Subway Station

RTH A ENERGY A ENVIRON

Intersecting Station in 1186.43 North ue g Middle BXP. JOINT 1169.98 South GEOVIRGINIA COLORADOSCHOOLOF**MINES** Lessons Learned in Geotechnical Engineering

Twin Peaks Tunnel, Colorado Spring, CO

40

- Ci
 Si
 TI
- RL(
- H
 C
 b

rrison Knudsen nel constructed by

s (DSC) for rock eotec.

ite

Boston Outfall Tunnel

- 41
- 10 mile of 26.5 ft diameter tunnel, lined with segmental lining
- Double Shield TBM was used by Kiewit-Atkinson-Kenny JV
- Geology, mainly argillite, at depth of ~200 ft under the Atlantic Ocean, staring from a shaft in Deer Island
- DSC claim for penetration (got 9 ft/hr instead of expected 15 fr/hr), low penetration attributed to rock anisotropy
- DSC for excessive grouting

Queens Tunnel, New York City

- 42
- 5 mile long, 23´2´ wide, and ~700´ deep tunnel through igneous/granitic rock.
- Contactor was Kiewiet-Shea
- Low penetration rates claim (~6 /hr [actual] vs. ~9 /hr [anticipated]) attributed to changed rock mass conditions, high-grade metamorphism of the rocks
- In other words, harder than expected rock but broken ground with frequent shear zones.
- Earlier tunnel in Queens by Shiavone – Shea had a claim for excessive cutter cost

Merguerian, Charles (primary); Ozdemir, Levent RETC-2003

Lessons Learned in Geotechnical Endin

Symour Capilano Twin Tunnels in Vancouver, BC

eymour Main

- 43
- Twin tunnel for Raw and Treated Water from Reservoir the dam to treatment plant and back Parade
- 7 km each, 3.8 m (~13ft) dia. ~300-600 m deep
- Mainly granite and igneous rocks, some areas with weathered granite

Capilano pumping

- acces shaf Spalling and rock falls due to stress
 - concentrations at 5 & 11 O'clock position
 - High in situ horizontal stresses of about 2-3.5^{there} time vertical/gravitational stress
 - Work was interrupted by rock burst!
 - 1st Contractor stopped due to safety concerns and was terminated,
 - 2nd contactor completed the job.
 - Over ~\$100 in Claims

The St Gotthard Base Tunnel in the Alps

44

•

- Total Tunnel Length
 - Nominal length 57.1 km
 - System length 151.8 km
 - TBM 98.1 km
 - Conventional 53.7 km
- Boring diameter
 - 8.8/9.4/9.5/11
- Overburden(min-max)
 - 100 2'350 m
- Characterization scheme
 - 2 single track tubes, connected with crosslinks every 312.5
 - 2 multifunction stations
 - 3 acceess galleries
 - 2 vertical shafts (800 m)
 - 1 bypass gallery
 - 1 inclined ventilation shaft

Lessons Learned in Geotechnical Engineering

The St Gotthard Base Tunnel in the Alps

- 45
- Main issue in this project was the In-situ stress and ground sqeezing
- Designed for up to 3 ft (~1m) of ground convergence
- Open type TBMs used for excavation, this allowed for convergence without entrapment of the shielded machines

North portal

GEOVIRGINIA

Lessons Learned in Geotechnical Engineering

GHOMRUD PROJECT, IRAN

- Overall Tunnel length: >50 km
- Broken into lots I-IV 9 km each + 14 km in lot #V
- Lots IV, III, and part of II excavated by Double Shield TBM for the length of 24+450 m
- TBM manufacturer: WIRTH Co.
- Diameter: 4.5 m (OD) 3.8 m (ID)
- Support: Hexagonal Segmental lining
- Start of excavation: Spring 2004
- End of excavation: Spring 2009

TBM Jamming due to Squeezing

Zagros long tunnel

49

- The Zagros tunnel is the largest water transfer project in western Iran situated within the Zagros mountain range
- The second lot of tunnel is approximately 26 km long and 6.73 m in diameter, currently under construction using a double shield (DS) TBM
- The tunnel passes through a variety of sedimentary rock formations with frequent changes in rock mass qualities from poor to very good
- The machine encountered many adverse geologic conditions, all of which resulted in reduced TBM utilization

Machine diameter	6,730 mm
Number of cutters	42
Cutter diameter	432 mm (17")
Average cutter spacing	90 mm
Cutterhead torque	4,747 kNm
Thrust force	29,038 kN
Rotational speed	0-9 rpm

Gas emission incident in Zagros long tunnel

51

- The toxic hydrogen sulfide (H₂S) and explosive methane (CH₄) are the gases mainly encountered along the tunnel route
- The gas origin was existing sulfide minerals and in particular Pyrite and also natural gas and oil bearing formations along the tunnel alignment which are known as the typical host of oil reservoirs in western Iran
- Seepage of black tarry liquids into tunnel is an indicator of existing oil (gas)-bearing formations
- The gas is highly soluble in water and is often brought into the tunnel by seepage, where it is then released into the atmosphere

Gas emission incident in Zagros long tunnel

5<u>2</u>

COLORADOSCHOOLOFMINES

ENERGY A ENVIRONMEN

Water discharge (lit/S)

GEOVIRGINIA

Lessons Learned in Geotechnical Engineering

Difficult ground conditions and TBM utilization

120.0 70 -H2S gas (ppm) — Utilization (%) 60 100.0 50 80.0 Utilization (%) H2S (ppm) 40 60.0 30 40.0 20 20.0 10 0.0 0 23-Jul-07 28-Jul-07 7-Aug-07 12-Aug-07 17-Aug-07 22-Aug-07 27-Aug-07 1-Sep-07 6-Sep-07 11-Sep-07 16-Sep-07 21-Sep-07 26-Sep-07 1-Oct-07 6-Oct-07 26-Oct-07 31-Oct-07 5-Nov-07 10-Nov-07 15-Nov-07 20-Nov-07 25-Nov-07 2-Aug-07 11-Oct-07 16-Oct-07 21-Oct-07

Gas concentration vs TBM utilization

COLORADOSCHOOLOFMINES

Gas emission related problems

- Health and Safety problems and hazards
- Difficult working conditions for tunnel crew
- 2 Fatalities due to negligence by the crew

Oma-Uya Project, Sri Lanka

- Components:
 - 2 dams
 - 4 km transfer tunnel
 - 15 km Headrace Tunnel
 - Surge Shaft,
 - Drop Shaft
 - Powerhouse
 - Access tunnels
 - 4 km Tailrace tunnel
 - Misc. Access or maintenance facilities

Uma Oya Multipurpose Project

Powerhouse

- Underground Powerhouse/Transformer
- Excavation Finished:

January 4th, 2016

Headrace Tunnel - Outlet

Headrace Tunnel

Disc cutter wear in hard abrasive rocks

GEOVIRGINIA

Lessons Learned in Geotechnical Engineering

Headrace Tunnel,

Flooding and Water Issues

Escandida Project, Chile

Seattle, Northgate tunnel project

- Typical Subway tunnel, ~20 ft Dia (6.3m), twin bore, in soft ground,
- 4.2-mile extension adds to the recently completed University Link tunnels running 3.2 miles
- Geology: various soils, sand, silty sand, clay. .
 . Under groundwater table, → pressurized face
- Two machines, one by Robbins one by Hitachi Zosen
- Tunnels are completed,

COLORADOSCHOOL

62

- Wear on the tools and cutterhead
- Issues with ground freezing for cross passages, and resulting heave

Seattle, University Link and Northgate tunnel project

• Wear of cutterhead and tools due to soil abrasivity and Boulders

Seattle, SR-99 Alaskan Way Viaduct Replacement

- Twin-deck highway with a world record-breaking 17.4-m (57.3-ft) bored tunnel, Nearly 3.2 km (2 miles)
- Largest EPB machine in the world
- Tunnel is lined with segmental lining
- Geology: mainly sandy/silt soil/fill plus cobles & boulders, under water table
- Passing under the existing viaduct, high rises of downtown Seattle, close to Seattle fish market, aquarium, and the ferry terminal

Table 1. EPBM specification	15
Diameter	17.48m
TBM length + back-up	98.2m
TBM weight	6,664 tonne
Min horizontal radius	350m (1,150ft)
Min vertical radius	488m (1,600ft)
Max pressure in chamber	10 bar
Max thrust	392,000kN
Cutterhead displacement (forward)	400mm
Cutterhead power	24 x 560kW
No of disc cutters	122
No of replaceable knife bit cutters	255
No of thrust cylinders	28 x 2
Rotation speed	0-1.8 rev/min
Max torque at 0.88 rev/min	147,400kNm
Break-out torque	206,360kNm
Screw conveyor diameter/ type/length	1,500mm/ribbon/10.5m + 23.8m
Total nower installed	22.9611/14

Seattle, SR-99 Alaskan Way Viaduct Replacement

Source: TunnelTalk

Seattle, SR-99 Alaskan Way Viaduct <u>Replacement</u>

Site Investigation

CHALLENGES IN USE OF AVAILABLE SPACE

Laying a Water Main in Hampstead 1851

68

Underground New York City – turn of the century

Composite Utility Plan

GEOVIRGINIA

Lessons Learned in Geotechnical Engineering

Site Investigation

- 71
- Soil boring, delineation of soil/rock or Top of Rock interface
- Trenches, sampling shafts (for boulders), ...
- Core logging
- Lab Tests
 - Soil, Rock, Groundwater
- In situ Testing
 - Groundwater table monitoring, Slug/Pump tests...

IRGINIA

- Borehole logging, Optical/Sonic televiewer
- Dilatometer, Pressure meter tests
- In-situ stress measurements

Laboratory Soil Testing

- Sieve
- Hydrometer
- Density /Specific Gravity
- Atterberg Limits
- Water Content
- Compaction
- PH measurement

- Permeability
- USCS
- Compressive Strength UU
- Compressive Strength CIU
- Organic Content
- Salinity
- Clay Minerals
- Shear Tests
- Soil Abrasion testing

GEOVIRGINIA
Soil Abrasion

- 73
- Typically a non-issue in geotech investigation
- Very critical to tunneling due to implications of tool change under hyperbaric conditions, high cost, risk, and safety issues
- Relatively new, no standard testing, still under study.

Proposed Soil Abrasion Testing System

74

Rostami, J., Alavi Gharahbagh, E., Palomino, A.M., Mosleh, M., 2012. Development of Soil Abrasivity Testing for Soft Ground Tunneling Using Shield Machines, *Tunneling and Underground Space Technology Journal*, Volume 28, pp. 245-256.

The white we set as the stying moder view of the soil can be simulated.

≻The chamber dimensions were selected to allow for soils potentially containing large gravel size particles, to simulate the in-situ conditions of the soil as closely as possible and avoid altering grain size distribution as in some other tests

GEOVIRGINIA

Lessons Learned in Geotechnical Engineering

Proposed Soil Abrasion Testing Method

150 mm

(0)

GEOVIRGINIA

Lessons Learned in Geotechnical Engineering

Rostami, J., Alavi Gharahbagh, E., Palomino, A.M., Mosleh, M., 2012. Development of Soil Abrasivity Testing for Soft Ground Tunneling Using Shield Machines, *Tunneling and Underground Space Technology Journal*, Volume 28, pp. 245-256.

⁷⁵ to avoid severe wear on the blades and also allow for more accurate measurement of the weight loss on the tools, the blades are

fitted with steel covers.

The propeller, to create maxin with the soil, drive shaft and cylindrical chan

The propeller has three blades with the radius of 150 mm. > The covers weigh much less than the blades and can be easily removed and weighed using a high-precision scale and provide This leaves an annular space of protection to the blade about 12 mm between the edge of the propeller blades and the walls of the chamber that allows for limited material flow inside the chamber.

Study of the Effect of Soil Conditioning on Soil abrasion

Alavi Gharahbagh, E., Rostami, J., Talebi, K., Ibarra, J., 2013. Experimental and Practical Study of Impact of Soil Conditioning on Soil Abrasion and Cutter Wear of EPB TBMs, RETC Conference, June 23-26, Washington, DC.

Physical Property Testing for Rocks

- Uniaxial Compressive Strength (UCS)
- Brazilian (Indirect) Tensile Strength (BTS)
- Cerchar Abrasivity Index (CAI)
- Punch Penetration Test
- Thin Section Petrographic Analysis
- Acoustic Velocities
- Point Load Index Test
- Triaxial Compression Test
- Static Elastic Modulus

ORADOS

	Sample Logging EARTH MECHANICS INSTITUTE Colorado School of Mines Sample Logging
	Project: QUEENS WATER TUNNEL, NO:3 - STAGE #2
	Rock Type: <u>Meturnorphic</u> Date: <u>8/27/1997</u>
	Core ID: $0 + 10$ Station: $0 + 50$
	Characteristics:
	Moisture Condition: As-received Air-dried Oven-dried Saturated Frozen
	Moisture Content: Yes: No:
	Sample Length: 11.5" Sample Weight: <u>NA</u>
	Diameter 1: Diameter 2: Diameter 3:
	Core mapping:
akite. T	Ton: with Bottom:
	\bigcirc \bigcirc
	Operator: M.L. + Cola Date: R/27/14497
	Supervisor: Date: 8/27/497
	Principal Investigator: Sevent Jelin Date: 8/27/1997

COLORADOSCHOOLOFMINES

Version: August-9"

CECONCENTION Williamstang VA. October 10 - October 12 Lessons Learned in Geotechnicat Engineering

Sample Preparation

Uniaxial Compressive Strength (ASTM 7012)

Non-structural Failure

Where,

- $\sigma_c \rightarrow$ Compressive Strength of the Core Sample (MPa or psi)
- $F \rightarrow$ Applied Force at Failure (N or lb.)
- A \rightarrow Initial Cross-sectional Area (mm² or in²)

Structural Failure

Brazilian Tensile Strength (ASTM D3967-95)

Normal Failure

Structural Failure

 $\sigma_T \rightarrow$ Tensile Strength (psi) $F \rightarrow$ Failure Load (lbs.) $L \rightarrow$ Thickness of the disk (in.) $D \rightarrow$ Diameter of the disk (in.)

COLORADOSCHOOLOFM

Effect of Foliation on Tensile Strength

Effect of Foliation/Bedding on Disc Cutting

Tunneling perpendicular to foliation

Tunneling parallel to foliation

Lessons Learned in Geotechnical Engineering

Cerchar Abrasivity Test

Abrasivity Index (CAI) has proven to be fairly accurate and is commonly used for cutter life estimation. A series of ulled across a freshly are related directly to broken surface of the ro ws calculation of the cutter life in field opera expected cutter costs per 6 5 4 4 1 3 2 6 3 1=1 G-1 GEOVIRGINIA COLORADOS

Lessons Learned in Geotechnical Engineering

Cerchar Index

Category	NTNU Classification CAI (pin hardness 43)	CSM Classification CAI (pin hardness 56)
Not very abrasive or	0.3 - 0.5	< 1.0
Non-Abrasive	"	"
Slightly abrasive	0.5 - 1.0	1.0 - 2.0
Medium Abrasiveness to Abrasive	1.0 - 2.0	2.0 - 4.0
Very abrasive	2.0 - 4.0	4.0 - 5.0
Extremely abrasive	4.0 - 6.0	5.0 - 6.0
Quartzitic	6.0 - 7.0	

There has been much discrepancies in testing procedures about the pin hardness, surface conditions of the sample, measurement method, etc. that has caused problems, be careful in recording testing details

ENERGY ENVIRONMEN

Thin-Section Petrographic Analysis (Suggested method by ISRM)

- Plane Polarized Light 20x.
- Notice Garnet Wrapping

The thin section analysis of rocks for engineering purposes includes the determination of parameters, which cannot be obtained from strength test of rock samples, such as mineral content, matrix characteristics grain size and texture. This analysis also helps identify any unusual rock microscopic features (i.e. grain suturing/interlocking, grain elongation), which may have an impact on its boreability.

- Plane Polarized Light, 20x
- Notice Elongation

Acoustic Velocity (ASTM D2845-95)

The velocities of compressive and shear ultrasonic waves through the core sample are measured and used to calculate the elastic modulus and Possion's ratio. This method indicates the compentecy of the rock.

$$E = \frac{\rho V_S^2 \left(3V_P^2 - 4V_S^2 \right)}{V_P^2 - V_S^2}$$
$$\mu = \frac{V_P^2 - 2V_S^2}{2 \left(V_P^2 - V_S^2 \right)}$$

 V_s = Shear wave velocity (in./s or m/s) V_p = Compressive wave velocity (in./s or m/s) E = Elastic modulus (psi or Pa) μ = Poisson's ratio

 ρ = Density (lb/in³ or kg/m³)

COLORADOSCHOOLOFMINES

Point Load Index (ASTM D5731)

 $I_{s} \rightarrow$ Point load index (psi)

- F → Failure load (lbs.)
- $D_e \rightarrow$ Distance between platen tips (in.)
- $D_e^2 = D^2 \rightarrow$ for diametrical test
 - = $4A/\pi \rightarrow$ for axial, block and lump test
 - A = W.D = minimum cross-sectional area of a plane through the platen contact
 - points

Punch Penetration Test

• In the Punch Penetration Index test, a standard indentor is pressed into a rock sample that has been cast in a confining ring. The load and displacement of the indentor are recorded with a computer system. The slope of the force-penetration curve indicates the excavatibility of the rock, i.e., the energy needed for efficient chipping.

COLORADOSCHOOLOFMINES

Earth Mechanics Institute Colorado School of Mines Punch Penetration Index Test

SINTEF / Norwegian Boreability Test Procedures and Apparatus

1. Brittleness Test

2. The Sievers' Miniature Drill Test

3. Abrasion Test

COLORADOSCHOOLOFMINES

Veight 10 kg Yobrating Flow rate -80g/min

 $\rightarrow AV(or ASV)$

SINTEF / Norwegian Boreability

- The tests yield three indices
 - Drilling Rate Index (DRI)
 - Cutter Life Index (CLI)
 - Bit Ware Index (BWI)
- Combined with joint info (spacing, orientation), and TBM specs and operational info, can be used for performance prediction

Core Scanning

Virtual Drill Core Library

COLC Drill Core Storage House

Virtual Drill Core Library

October 10 - Octo

Core logs

CoreLog-Integra & Fracture Analysis™ Evaluation Software

- DMT CoreScan was developed for the use in both reservoir classes:
 - Fractured Reservoirs
 - Clastic Reservoirs

COLORADOSCHOOLOF**MINES**

- Important parameters for the calculation of Fluid Flow of "fractured deposits" can be measured with CoreLog-Integra:
 - Geometric relationship of productive fractures (connectivity)
 - Quantifying the storage capacity
 - Visualisation of fracture distribution and locate productive fractures (aperture estimates, fracture characterisation at different scales)
- Fluid flow in "Fractured Reservoirs" is mainly based on quantitative derivation of required data from fracture orientation, fracture density and fracture spacing (estimates aperture).

Lessons Learned in Geotechnical Engineering

In situ testing

- 94
- Logging boreholes to see voids/measurement of rock properties/joint density/joint orientation
 - Sonic/ acoustic /optical televiewers
- In-situ stresses measurement in rock, over-coring/fracing
- Pressure tests for in-situ Elastic property measurements
- Groundwater monitoring
 - Groundwater table, Perched/artesian aquifers need multiple level piezometers

GEOVIRGINIA

- Monitoring for extended period of time to see seasonal fluctuations,
- Measuring permeability is critical, slug / pump tests
- Check water salinity and flow rates for ground freezing

Geotech Cost, Reports and Risk Management for Tunneling Projects

Goetech Site Investigations

96

• Prospective and Interest

- Owner (private, public, quasigovernment)
- Engineer / Designer
- Contractor (single or joint)
- Construction Management (CM)

Phases of Site Investigation

- Phase I Feasibility
- Phase II Preliminary Design
- Phase III Final Design
- Phase IV Construction

Geotechnical Reports

- Geotechnical Site Investigation Planning, typically at early design stage, never published
- Geotech Data Report (GDR), Contract documents
- Geotechnical Intepretive Report (GIR), contract doc, mostly for soil and shallow structures
- Geotechnical Data Summary Report (GDSR),
- Geotech Baseline Report (GBR), Contract document, higher risk more expensive projects, a risk sharing scheme, and a legal framework

Risk Assessment

- Geotech site investigation should be based on <u>Risk Assessment and Risk Management</u>
- This means being prepared for higher cost test where the consequence of missing a feature is very detrimental to the project

Risk Management

- Can you or can you not live with your residual risks? Use a Risk Profile/Matrix to decide.
- (Use as a starter kit e.g. ISO Guide 51:1999 / ISO TS 14'798:2000)

	Risk Profile/Matrix ¹ after implemented project measures							Risk Profile/Matrix ¹ after additional measures				
lity)	Α			7		lity)	A					
robabi	В				8	nobabi	В					
azard	С			1	3	azard	С				7	
ney (H	D	4				ncy (H	D				1	3, 8
anbau	E		6	2		lenber	E	4			2	
Ľ.	F					F	F			6		
		IV						IV IV				
			S* Severity (haza	rd effect category)	•				S Severity (hazard effect category)			
S Severity (Hazard effect category) F Frequency (Hazard probability)										y)		
I Death/system loss/severe environmental damage/financial loss > USD 10 M A Likely to occur often												
	II Inecoverable injury/irrecoverable illness/major system damage/major environmental damage/financial loss <= USD 10 M B Will occur several times (more than once) in the life cycle of the system										life cycle of the system	
111	III Recoverable injury/recoverable injury/recoverab											
	In the coverable injury/necoverable intersection of the system damage/map environmental damage/mancial loss <= 05D 1 M C Will occur once in the life cycle of the system Will be transitive with a pixed base and an appendixed base of 15D 0 M C Will occur once in the life cycle of the system V Will be transitive with a pixed base and an appendixed base of 15D 0 M C Will occur once in the life cycle of the system											

ut may possibly occur in the life cycle of the system Risk zones after preliminary hazard analysis/risk assessment => consequences ET So unlikely that it can be assumed occurrence will not be experienced Reduce risk Monitor risk The hazard incident cannot occur unless caused by a deliberate act No further measures required ellow

	Residual Risks to be accepted ³									
No First, summary explanation			No	First, summary explanation	No	First, summary explanation				
	3	State of the art								
	8	Outside of systems' limits								

GEOVIRGINIA

Planning Site Investigation for Tunneling

- Spacing of Borings: General Rule of Thumb!
 - For uniform and consistent grounds <u>0.7 ft/ft tunnel (m/m)</u>
 - For typical ground conditions

<u>1-1.5 ft/ft tunnel (m/m)</u>

VIRGINIA

- For very variable and changing grounds or for very sensitive structures <u>1.5-2 ft/ft tunnel (m/m)</u>
- Shafts need one boring at the center line and at least one more at the edge or preferably 2-3 on the periphery to identify transitions
- For example for a 20,000 ft tunnel 30 ft dia.
 - If tunnel is shallow ~150 ft and in typical geology, go for 210 ft borings then we
 need 90 borings meaning average of ~200 ft interval
 - For a 500 ft deep tunnel in consistent geology, boring depth of 560 ft and we may need 27 borings at 750 ft interval.
- Target to extend the borings 2D below invert
- However, if the proposed vertical alignment is subject to modifications, it may be more economical to extend these depths to 3 times the tunnel diameter, for contingency purposes
- Use inclined boring as needed

Cost of Geotech Investigation for Tunneling

10 1

Reasonable range 3-7% total construction

Tunnel	Start of the works	Туре	Total Length	Cumulated length of boreholes	Cost of explorations / cost of tunnel	Invest. Cost [M€]	Constr. method
Lötschberg	1994	Railway	34,6 km	N/A	2,8 %	N/A	Gripper TBM / DB
Gothard	1998	Railway	53,9 km	N/A	1,4 %	N/A	TBM / DB
Brenner	2011	Railway	57,0 km	~ 36 km	8,7 % I ncluding exploratory galleries	0,63	
LTF	Detailed design phase	Railway	57,1 km	~ 62 km	8,9 % ncluding exploratory galleries	1,08	
Koralm Base Tunnel	In construction		33 km	~ 21 km	1,9 %	0,64	N/A
Semmering Base Tunnel	In construction		27 km	~ 38,5 km	1,7 %	1,43	N/A

Tunnel	Start of the works	Туре	Total Length	Cumulated length of boreholes	Cost of explorations / cost of tunnel	Invest. Cost [M€]	Constr. method
Saint Vallier	2002	Road	178 m	225 m	2,6 %	1,26	D&B
Schirmeck	2003	Road	550 + 150 m	704 m	3,7%	1,01	D&B
Bois du Peu	2004	Road	2*600 + 90 m	885 m	2,2% Excluding costs for exploratory gallery	1,09	D&B
Peute Combe	2009	Road	2*600 + 120 m	1219 m	3,85%	0,95	D&B
Saint Béat	2010	Road	110 + 310 m	1586 m	2,1%	1,12	D&B

Source: ITA work group #2 on Geotech Investigations

Summary

10 2

- Geotech Investigation for Tunnel and Underground Construction is more critical/sensitive than other construction projects
- Specialized tests are necessary, depending on construction method
- The lower the investment in Geotech investigations, the higher the probability and magnitude of the Claim
- Owners: Do not pressure the Geotech to reduce the budget, Pay back is a b.....
- Consultants/designers: Make sure to educate your clients, properly plan the Geotech work with sufficient time for proper investigation ahead of design
- Contractors: it is worthwhile to spend some money to identify the ground condition issues beforehand
- Geotech Engineers, You are going to be blamed for all the construction problems no matter what!! :o)

THANKS FOR YOUR ATTENTION

QUESTIONS

